
Concurrency
• Semaphores, Condition Variables,

Producer Consumer Problem 

Kartik Gopalan

Chapters 2 (2.3) and 6  
Tanenbaum’s Modern OS

Semaphore
• Semaphore is a fundamental synchronization

primitive used for
• Locking around critical regions
• Inter-process synchronization

• A semaphore “sem” is a special integer on which
only two operations can be performed.
• DOWN(sem)
• UP(sem)

The DOWN(sem) Operation
• If (sem > 0) then

• Decrements sem by 1
• The caller continues executing.
• This is a “successful” down operation.

• If (sem == 0) then
• Block the caller
• The caller blocks until another process calls an UP.
• The blocked process wakes up and tries DOWN again.
• If it succeeds, then it moves to “ready” state
• Otherwise it is blocked again till someone calls UP.
• And so on.

The UP(sem) Operation

• This operation increments the semaphore sem by 1.

• If the original value of the semaphore was 0, then UP
operation wakes up any process that was sleeping on the
DOWN(sem) operation.

• All woken up processes compete to perform DOWN(sem)
again.
• Only one of them succeeds and the rest are blocked again.

5

Semaphore Example — “Chair is taken”

sem = 3

6

Semaphore Example — “Chair is taken”

sem = 2

Down (sem)

7

Semaphore Example — “Chair is taken”

sem = 1

Down (sem)

8

Semaphore Example — “Chair is taken”

sem = 0

Down (sem)

9

Semaphore Example — “Chair is taken”

sem = 0

Down (sem)

Blocked

10

Semaphore Example — “Chair is taken”

sem = 0

Blocked

Down (sem) Down (sem)

11

Semaphore Example — “Chair is taken”

sem = 1

Blocked

UP (sem)

Down (sem) Down (sem)

12

Semaphore Example — “Chair is taken”

sem = 0

Blocked

Down (sem)

Down (sem)

13

Semaphore Example — “Chair is taken”

sem = 1

Blocked

Up (sem)

Down (sem)

14

Semaphore Example — “Chair is taken”

sem = 2

Blocked

Up (sem)

Down (sem)

15

Semaphore Example — “Chair is taken”

sem = 1

Down (sem)

Mutex
• Mutex is simply a binary semaphore

• It can have a value of either 0 or 1

• Mutex is used as a LOCK around critical sections

• Locking a mutex means calling Down(mutex)
• If mutex==1, decrement mutex value to 0
• Else, sleep until someone performs an UP

• Unlocking a semaphore means calling UP(mutex)
• Increment mutex value to 1
• Wake up all sleepers on DOWN(mutex)
• Only one sleeper succeeds in acquiring the mutex. Rest go back to sleep.

• For example:
Down(mutex) // Acquire the lock, sleep if mutex is 0
Critical Section…
Up(mutex) // release the lock, wake up sleepers

17

Mutex Example — “Chair is taken”

mutex = 1

18

Mutex Example — “Chair is taken”

mutex = 0

Down (mutex)

19

Mutex Example — “Chair is taken”

mutex = 0

Blocked

Down (mutex)

20

Mutex Example — “Chair is taken”

mutex = 1

Blocked

UP (mutex)

21

Mutex Example — “Chair is taken”

mutex = 0

Down (mutex)

Example: Producer-Consumer Problem

• Producers and consumers run in concurrent processes.

• Producers produce data and consumers consume data.

• Producer informs consumers when data is available
• Consumer informs producers when a buffer is empty.
• Two types of synchronization needed

• Locking the buffer to prevent concurrent modification
• Informing the other side that data/buffer is available

FullEmpty

Producers Consumers

Common Buffer

Using Semaphores for the P-C problem

Note: Two types of semaphores used here.
A binary semaphore to lock the queue (mutex)
Regular sems to block on event (empty and full).

Up: Increments the value of semaphore, wakes up sleepers to compete on sem
Down: Decrements semaphore, but blocks the caller if sem value is 0

Using Semaphores – POSIX interface
• sem_open() -- Connects to, and optionally creates, a named semaphore

• sem_init() -- Initializes a semaphore structure (internal to the calling program, so not a named semaphore).

• sem_wait(), sem_trywait() -- Blocks while the semaphore is held by other processes or returns an error if the
semaphore is held by another process.

• sem_post() -- Increments the count of the semaphore.

• sem_close() -- Ends the connection to an open semaphore.

• sem_unlink() -- Ends the connection to an open semaphore and causes the semaphore to be removed when the
last process closes it.

• sem_destroy() -- Initializes a semaphore structure (internal to the calling program, so not a named semaphore).

• sem_getvalue() -- Copies the value of the semaphore into the specified integer.

• Semaphore overview : Do “man sem_overview” on any linux machine

Another way for using Semaphores - System V interface
• Creation

• int semget(key_t key, int nsems, int semflg);
• Sets sem values to zero.

• Initialization (NOT atomic with creation!)
union semun arg;
arg.val = 1;
if (semctl(semid, 0, SETVAL, arg) == -1) {

perror("semctl"); exit(1);
}

• Incr/Decr/Test-and-set
• int semop(int semid ,struct sembuf *sops, unsigned int nsops);

• Deletion
• semctl(semid, 0, IPC_RMID, 0);

Examples:
seminit.c
semdemo.c
semrm.c

http://www.cs.binghamton.edu/~kartik/cs350/examples/seminit.c
http://www.cs.binghamton.edu/~kartik/cs350/examples/semdemo.c
http://www.cs.binghamton.edu/~kartik/cs350/examples/semrm.c

Monitors and Condition Variables

Monitors and condition variables

Function1()

Function2()

wait(c);

signal(c);

• Monitor is a collection of critical section
procedures (functions)

• i.e. functions that operate on shared
resources

• There’s one global lock on all procedures in
the monitor.

• Only one procedure can be executed at any
time

• wait(c) : releases the lock on monitor and puts
the calling process to sleep.
ALSO:Automatically re-acquires the lock
upon return from wait(c).

• signal(c): wakes up all the processes sleeping
on c; the woken processes then compete to
obtain lock on the monitor.

P-C problem with monitors and condition variables

Atomic Locking – TSL Instruction

Test-and-Set Lock (TSL) Instruction
• Instruction format: TSL Register, Lock

• Lock
• Located in memory.
• Has a value of 0 or 1

• Register
• One of CPU registers

• TSL does the following two operations atomically (as one step)
1. Register := Lock; // Copy the old value of Lock to Register
2. Lock := 1; // Set the new value of Lock to 1

• Atomic: means that the caller cannot be preempted between the two operations

• TSL is a basic primitive using which other more complex locking mechanisms
can be implemented.

Implementation of Mutex Using TSL

In C-syntax:
void Lock(boolean *lock) {
 while (test_and_set(lock) == true);
}

32

Compare and Set Instruction
• Atomic Operation:

• If a memory location equals a “given”
value, then assign a “new” value to the
memory location. Else return the old
value of the memory location.

• Useful for lock-free synchronization
• bool compare_and_set(mem, old, new)

{
 if mem ≠ old

return false;
 else

mem = new;
 return true
}

• Ref: https://en.wikipedia.org/wiki/Compare-and-swap

• x86 instruction:
• CMPXCHG NEWVAL, MEMORY
• NEWVAL: Explicit operand. A register.
• MEMORY: Explicit operand. A

memory location (or a register).
• Plus two implicit operands:

• EAX register : contains the “given”
value and returns the final value of
MEMORY

• EFLAGS.ZF bit: Indicates if
exchange was successful or not.

• IF (%EAX == MEMORY) THEN
• EFLAGS.ZF := 1
• MEMORY := NEWVAL

• ELSE
• EFLAGS.ZF := 0
• %EAX := MEMORY

https://en.wikipedia.org/wiki/Compare-and-swap

