Concurrency
* Semaphores, Condition Variables,
Producer Consumer Problem

Kartik Gopalan

Chapters 2 (2.3) and 6
Tanenbaum’s Modern OS

Semaphore

* Semaphore 1s a fundamental synchronization
primitive used for

* Locking around critical regions
* Inter-process synchronization

* A semaphore “sem’ 1s a special integer on which
only two operations can be performed.

« DOWN(sem)
 UP(sem)

The DOWN(sem) Operation

e If(sem > 0) then
e Decrements sem by 1
* The caller continues executing.
 This 1s a “successful” down operation.

e If (sem == 0) then
 Block the caller
* The caller blocks until another process calls an UP.
* The blocked process wakes up and tries DOWN again.
 If 1t succeeds, then 1t moves to “ready” state
« Otherwise i1t is blocked again till someone calls UP.
* And so on.

The UP(sem) Operation

* This operation increments the semaphore sem by 1.

If the original value of the semaphore was 0, then UP

operation wakes up any process that was sleepmg on the
DOWN(sem) operation.

All woken up processes compete to perform DOWN(sem)
again.

* Only one of them succeeds and the rest are blocked again.

Semaphore Example — “Chair 1s taken™

sem = 3

Semaphore Example — “Chair 1s taken™

sem = 2

Semaphore Example — “Chair 1s taken™

sem = 1

Semaphore Example — “Chair 1s taken™

sem = ()

Semaphore Example — “Chair 1s taken™

sem = ()

Blocked

Semaphore Example — “Chair 1s taken™

sem = ()

Blocked

10

Semaphore Example — “Chair 1s taken™

sem = 1

Blocked

11

Semaphore Example — “Chair 1s taken™

sem = ()

Blocked

12

Semaphore Example — “Chair 1s taken™

sem = 1

Blocked

13

Semaphore Example — “Chair 1s taken™

sem = 2

Blocked

14

Semaphore Example — “Chair 1s taken™

sem = 1

15

Mutex

Mutex 1s simply a binary semaphore
» It can have a value of either 0 or 1

Mutex 1s used as a LOCK around critical sections

Locking a mutex means calling Down(mutex)
o If mutex==1, decrement mutex value to 0
* Else, sleep until someone performs an UP

Unlocking a semaphore means calling UP(mutex)
* Increment mutex value to 1
» Wake up all sleepers on DOWN(mutex)
* Only one sleeper succeeds in acquiring the mutex. Rest go back to sleep.

For example:

Down(mutex) // Acquire the lock, sleep if mutex 1s 0
Critical Section...

Up(mutex) // release the lock, wake up sleepers

Mutex Example — “Chair 1s taken”

mutex = 1

17

Mutex Example — “Chair 1s taken”

mutex = 0

18

Mutex Example — “Chair 1s taken”

mutex = 0

Blocked ‘

Mutex Example — “Chair 1s taken”

mutex = 1

Blocked ‘

Mutex Example — “Chair 1s taken”

mutex = 0

21

Example: Producer-Consumer Problem

Common Buffer ‘

@D
Empty Full ‘

> =

Producers Consumers

* Producers and consumers run in concurrent processes.
* Producers produce data and consumers consume data.
e Producer informs consumers when data 1s available

* Consumer informs producers when a buffer 1s empty.

* Two types of synchronization needed

» Locking the buffer to prevent concurrent modification
 Informing the other side that data/buffer is available

Using Semaphores for the P-C problem

#define N 100 * number of slots in the buffer =/
typedef int semaphore; /* semaphores are a special kind of int >/
semaphore mutex = 1; /> controls access to critical region */
semaphore empty = N; /* counts empty buffer slots >/
semaphore full = O; /* counts full buffer slots =/

void producer(void)

{

int item;

while (TRUE) { /> TRUE is the constant 1 =/
item = produce_ _item(); /* generate something to put in buffer =/
down(&empty); /> decrement empty count */
down(&mutex); /* enter critical region >/
insert__item(item); /> put new item in buffer =/
up(&mutex); /> leave critical region =/
up(&full); /* increment count of full slots */

Note: Two types of semaphores used here.
A binary semaphore to lock the queue (mutex)

void consumer(void)

{ e Regular sems to block on event (empty and full).
while (TRUE) { /> infinite loop */
down (&full); /> decrement full count >/
down(&mutex); /> enter critical region */
item = remove_ itemy(); /> take item from buffer =/
up(&mutex); /> leave critical region */
up(&empty); /* increment count of empty slots >/
consume__item(item); /> do something with the item */
H
} Up: Increments the value of semaphore, wakes up sleepers to compete on sem

Down: Decrements semaphore, but blocks the caller if sem value 1s 0

Using Semaphores — POSIX interface

sem_open() -- Connects to, and optionally creates, a named semaphore
sem_init() -- Initializes a semaphore structure (internal to the calling program, so not a named semaphore).

sem_wait(), sem_trywait() -- Blocks while the semaphore is held by other processes or returns an error if the
semaphore is held by another process.

sem_post() -- Increments the count of the semaphore.
sem_close() -- Ends the connection to an open semaphore.

sem_unlink() -- Ends the connection to an open semaphore and causes the semaphore to be removed when the
last process closes it.

sem_destroy() -- Initializes a semaphore structure (internal to the calling program, so not a named semaphore).
sem_getvalue() -- Copies the value of the semaphore into the specified integer.

Semaphore overview : Do “man sem_overview” on any linux machine

Another way for using Semaphores - System V interface

Creation
» int semget(key t key, int nsems, int semflg);
» Sets sem values to zero.

Initialization (NOT atomic with creation!)
union semun arg;

arg.val = 1;

if (semctl(semid, 0, SETVAL, arg) == -1) {

perror("semctl"); exit(1);
b

Incr/Decr/Test-and-set
* int semop(int semid ,struct sembuf *sops, unsigned int nsops);

Deletion
« semctl (semid, 0, IPC RMID, O0);

Examples:
seminit.c
semdemo.c
semrm.c

http://www.cs.binghamton.edu/~kartik/cs350/examples/seminit.c
http://www.cs.binghamton.edu/~kartik/cs350/examples/semdemo.c
http://www.cs.binghamton.edu/~kartik/cs350/examples/semrm.c

Monitors and Condition Variables

Monitors and condition variables

monitor example
integer i;
condition c;
procedure Functionl()
wait(c);
end;
procedure Function2()

signal(c);

end;
end monitor:

Monitor 1s a collection of critical section
procedures (functions)

* 1.e. functions that operate on shared
resources

There’s one global lock on all procedures in
the monitor.

* Only one procedure can be executed at any
time

wait(c) : releases the lock on monitor and puts
the calling process to sleep.
ALSO:Automatically re-acquires the lock
upon return from wait(c).

signal(c): wakes up all the processes sleeping
on c; the woken processes then compete to
obtain lock on the monitor.

P-C problem with monitors and condition variables

procedure producer, monitor ProducerConsumer
begin condition full, empty;
while true do integer count;
begin procedure insert(item: integer);
item = produce_item; begm‘ :
ProducerConsumer.insert(item) ‘.f CURERS N .thenl_walt(zull), I
end insert_item(item);
end; count := count + 1;
procedure consumer; if count = 1 then|signal(empty) |
begin end; . |
while f7ue do function remove: integer;
begin begin

if count =0 theli wait(empty); |
remove = remove _item,
arid count .= count — 1;
ohid: if count=N—1 theri signal(full)
end;
count =0,
end monitor;

item = ProducerConsumer.remove;
consume _item(item)

Atomic Locking — TSL Instruction

Test-and-Set Lock (TSL) Instruction

Instruction format: TSL Register, Lock

Lock

* Located in memory.
 Has a value of 0 or 1

Register
* One of CPU registers

TSL does the following two operations atomically (as one step)
1. Register := Lock; // Copy the old value of Lock to Register
2. Lock :=1; // Set the new value of Lock to 1

Atomic: means that the caller cannot be preempted between the two operations

TSL 1s a basic primitive using which other more complex locking mechanisms
can be implemented.

Implementation of Mutex Using TSL

mutex __lock:
TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex__lock | try again later

ok: RET| return to caller; critical region entered

mutex _unlock:
MOVE MUTEX,#0 | store a 0 in mutex
RET | return to caller

In C-syntax:
void Lock(boolean *lock) {
while (test and_set(lock) == true);
§

Compare and Set Instruction

* x86 1nstruction:
« CMPXCHG NEWVAL, MEMORY

* Atomic Operation:

 If a memory location equals a “given”

value, then assign a “new” value to the « NEWVAL: Explicit operand. A register.
memory location. Else return the old - MEMORY: Explicit operand. A
value of the memory location. memory location (or a register).
» Useful for lock-free synchronization * Plus two implicit operands:
* bool compare and_set(mem, old, new) « EAX register : contains the “given”
{ value and returns the final value of
| MEMORY
if mem # old - EFLAGS.ZF bit: Indicates if
return false; exchange was successful or not.
else . IF (%EAX == MEMORY) THEN
mem = new; « EFLAGS.ZF =1
return true « MEMORY :=NEWVAL
! + ELSE
e Ref’ https://en.wikipedia.org/wiki/Compare-and-swap « EFLAGS.ZF :=0

« %EAX := MEMORY
32

https://en.wikipedia.org/wiki/Compare-and-swap

