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Isolation
• Isolation 

• Limiting what/who a process/application can see. 

• Limiting who can see a process/application 

• Two extremes 

• Traditional Process 

• System Virtual Machines



Traditional Processes

• Each process gets its own 

• Virtual memory 

• One or more virtual CPUs (threads) 

• Access to OS services via system calls 

• All co-located processes can see/share a lot (in an OS-controlled manner) 

• File system, storage, network, and I/O devices 

• Other processes  (for Inter-process communication)
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System Virtual Machines

• Co-related processes grouped into VMs 

• Each VM has its own  

• Guest OS 

• Guest physical memory (“virtualized” view of memory seen by guest OS) 

• One or more virtual CPUs 

• Virtual I/O devices: virtual disk, virtual network 

• Ideally: Co-located VMs don’t see/share ANYTHING
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What level to isolate?
• Processes share too much 

• Great performance but not isolated enough 

• System VMs are too heavy 

• Great Isolation but too heavy due to separate guest OS per VM 

• Operating-system-level virtualization 

• Multiple isolated user-spaces  

• Share one kernel. 

• Native performance
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Containers

• Containers  

• group traditional processes together and  

• restrict what resources they can see/access.  

• In Linux, containers  consist of  

• Namespaces 

• Control Groups  (cgroups)

Container

Process Process Process

Container

Process Process Process

Host OS



Chroot
• An early precursor to modern namespaces 

• Change root directory for the calling process and its children to a 
given path 

• $ chroot NEWROOT

OR 

• $ chroot(path)

• “This call changes an ingredient in the pathname resolution 
process and does nothing else.” — man chroot 

• Not secure. Lots of ways to escape chroot jail.



FreeBSD Jails
• Builds upon chroot to compartmentalize files and other resources  

• Jails protects rest of the system from the jailed process 

• Not the other way around! 

• Virtualized resources 

• file system, 

• the set of users, including own root account. 

• networking subsystem 

• Again: Jail escapes were possible!



Linux Namespaces
• “A namespace wraps a global system resource in an abstraction that makes it appear to the 

processes within the namespace that they have their own isolated instance of the global resource.” 
- from “$ man namespaces” 

• PID Namespace  

• Limit the set of processes that can be see each other. 

• IPC namespace 

• Limit the set of processes which are allowed to communicate with each other 

• Filesystem namespace 

• Limit which part of filesystem is seen by a process group 

• Network namespace 

• Unique IP address host name, domain name, etc for a group of processes 

• User Namespace 

• User and Group IDs



Cgroups (Control Groups)

• Beancounter 

• performs resource accounting for groups of 
processes 

• Allows administrator to set soft/hard limits on usage 
of memory, network bandwidth, CPU etc. 

• Typically used alongside with Linux namespaces



Single System Image
• Extend the notion of namespaces to multiple physical machines 

• Multiple machines look like one (or more) namespace(s) 

• PID namespace 

• IPC Namespace 

• Filesystem namespace 

• Process migration 

• Allows moving processes from one machine to another without 
changing its namespace. 

• Examples: MOSIX, OpenSSI, Kerrighed


