
OS-level virtualization
(Containers)

Kartik Gopalan

Isolation
• Isolation

• Limiting what/who a process/application can see.

• Limiting who can see a process/application

• Two extremes

• Traditional Process

• System Virtual Machines

Traditional Processes

• Each process gets its own

• Virtual memory

• One or more virtual CPUs (threads)

• Access to OS services via system calls

• All co-located processes can see/share a lot (in an OS-controlled manner)

• File system, storage, network, and I/O devices

• Other processes (for Inter-process communication)

Process Process Process Process

Host OS

System Virtual Machines

• Co-related processes grouped into VMs

• Each VM has its own

• Guest OS

• Guest physical memory (“virtualized” view of memory seen by guest OS)

• One or more virtual CPUs

• Virtual I/O devices: virtual disk, virtual network

• Ideally: Co-located VMs don’t see/share ANYTHING

Processes
——————

Guest OS

Processes
——————

Guest OS

Hypervisor

What level to isolate?
• Processes share too much

• Great performance but not isolated enough

• System VMs are too heavy

• Great Isolation but too heavy due to separate guest OS per VM

• Operating-system-level virtualization

• Multiple isolated user-spaces

• Share one kernel.

• Native performance

Container

Process, VM, Container
Processes

——————
Guest OS

Processes
——————

Guest OS

Hypervisor

Traditional VMs

Process Process Process Process

Host OS

Traditional Processes

Process Process Process

Container

Process Process Process

Host OS

Containers

Containers

• Containers

• group traditional processes together and

• restrict what resources they can see/access.

• In Linux, containers consist of

• Namespaces

• Control Groups (cgroups)

Container

Process Process Process

Container

Process Process Process

Host OS

Chroot
• An early precursor to modern namespaces

• Change root directory for the calling process and its children to a
given path

• $ chroot NEWROOT

OR

• $ chroot(path)

• “This call changes an ingredient in the pathname resolution
process and does nothing else.” — man chroot

• Not secure. Lots of ways to escape chroot jail.

FreeBSD Jails
• Builds upon chroot to compartmentalize files and other resources 

• Jails protects rest of the system from the jailed process

• Not the other way around!

• Virtualized resources

• file system,

• the set of users, including own root account.

• networking subsystem

• Again: Jail escapes were possible!

Linux Namespaces
• “A namespace wraps a global system resource in an abstraction that makes it appear to the

processes within the namespace that they have their own isolated instance of the global resource.”
- from “$ man namespaces”

• PID Namespace

• Limit the set of processes that can be see each other.

• IPC namespace

• Limit the set of processes which are allowed to communicate with each other

• Filesystem namespace

• Limit which part of filesystem is seen by a process group

• Network namespace

• Unique IP address host name, domain name, etc for a group of processes

• User Namespace

• User and Group IDs

Cgroups (Control Groups)

• Beancounter

• performs resource accounting for groups of
processes

• Allows administrator to set soft/hard limits on usage
of memory, network bandwidth, CPU etc.

• Typically used alongside with Linux namespaces

Single System Image
• Extend the notion of namespaces to multiple physical machines

• Multiple machines look like one (or more) namespace(s)

• PID namespace

• IPC Namespace

• Filesystem namespace

• Process migration

• Allows moving processes from one machine to another without
changing its namespace.

• Examples: MOSIX, OpenSSI, Kerrighed

