
Live Migration of Virtual
Machines

Pre-copy :Christopher Clarke, Keir Fraser, et. al. NSDI 2005

Post-copy: Hines, Deshpande, Gopalan, VEE 2009

What is live VM migration?

• Move a VM from one physical machine to another even as its applications continue to
execute during migration

• Live VM migration usually involves

– Migrating memory state

– Migrating CPU state

– Optionally, migrating virtual disk state

• Migration managers at source and destination

• Connect via TCP connection

• At source, the migration manager maps the guest VM’s memory and execution state

• Transfers VM’s pages to the target migration manager over TCP connection.

• At destination, the migration manager restores the VM’s state and resumes execution

• Migration manager examples: xend for Xen, QEMU for KVM

3

Fig. 1. Eviction time of a single idle VM. The destination
host is either idle or runs two busy VMs running TunkRank.

for write-intensive workloads post-copy yields lower
network traffic overhead and total migration time, and
hence eviction time. Technically, the downtime of post-
copy is minimal since the VM’s execution switches al-
most instantaneously to the destination. However, the
performance degradation may be worse than pre-copy
right after the execution switch because user-level appli-
cations in the VM may not become responsive until their
working set is fetched from the source.

3 DEMONSTRATING THE PROBLEM

Here we experimentally demonstrate that eviction time
suffers with traditional migration techniques when the
destination host is under resource pressure. All exper-
iments in this section use dual quad core servers with
2.3GHz CPUs, 26GB DRAM, and 1Gbps Ethernet cards.
All servers are connected to a Nortel 4526-GTX Ether-
net switch. Hosts run Linux kernel 3.2.0.4-amd64 and
KVM/QEMU 1.6.50. All VMs run Ubuntu 14.04.2 as the
guest OS, use Linux kernel 3.2, have 2 virtual CPUs
(vCPUs), and have Virtio enabled for both the hard disk
and network adapter. We use the standard implemen-
tation of pre-copy live migration that comes bundled
with KVM/QEMU and the publicly available post-copy
implementation from the Yabusame [4] project.

Figure 1 demonstrates that memory pressure at a
destination adversely affects VM eviction time using tra-
ditional pre-copy and post-copy approaches. We migrate
an idle VM with 5GB memory size from the source to
the destination. The source host only performs migration
of an idle VM and nothing else, whereas the destination
host faces varying degrees of memory pressure. The des-
tination host is either idle (denoted “Idle” in our results)
or runs two VMs of 5GB memory size both running
TunkRank. TunkRank is a memory and CPU-intensive
graph analytics benchmark from the CloudSuite [19]
package which determines a Twitter user’s influence
based on followers. We have configured TunkRank to
use a 1.3GB Twitter database which generates a memory
pressure of around 4GB per VM during execution.

We increase the available DRAM at the destination
host from 12GB to 16GB in 1GB increments (using BIOS
options at boot time), thus gradually decreasing the

Fig. 2. Eviction time of multiple 5GB VMs. The migrating
VMs are either idle or busy running TunkRank.

9LUWXDO�

0DFKLQH

6RXUFH�+RVW

0LJUDWLRQ
0DQDJHU

DW

6RXUFH

0LJUDWLRQ
0DQDJHU

DW

'HVWLQDWLRQ

9LUWXDO�

0DFKLQH
7&3�

&RQQHFWLRQ

'HVWLQDWLRQ�+RVW

Fig. 3. Coupling in traditional Pre-copy and Post-copy:

memory pressure. Figure 1 plots the eviction time for
a single VM using both pre-copy and post-copy. When
the destination host is idle, both pre-copy and post-copy
yield low eviction times. However, when the destination
host is busy running the TunkRank workload in two
VMs, the eviction time for both migration techniques
increases by a factor of 6.3 – from 52s for 16GB DRAM
to 328s for 12GB DRAM. The hypervisor at the destina-
tion must swap out resident pages to accommodate the
incoming VM, which slows down the reception rate and
increases the eviction time at the source.

Figure 2 shows the severity of this problem when
multiple 5GB VMs are migrated simultaneously. The
destination has 26GB memory and hosts two 5GB busy
VMs running TunkRank. The migrating VMs are either
idle or busy executing TunkRank. The eviction time
increases by about 400s for all cases as the number
of VMs being migrated increases from 1 to 5. When
migrating busy VMs, pre-copy eviction time is higher
because TunkRank dirties a large number of pages which
must be retransmitted. In contrast, post-copy sends each
page only once, so the eviction time remains similar
when migrating both idle and busy VMs.

4 SCATTER-GATHER MIGRATION DESIGN
In traditional live VM migration, shown in Figure 3, the
source directly transfers the VM’s state to the destina-
tion. The source and destination run Migration Managers
for each VM being migrated. A TCP connection between
the Migration Managers carries both data (VM’s memory
and CPU state) and control information (handshakes,
synchronization, etc). This connection is torn down only
after the destination receives the entire VM.

The Scatter-Gather approach is shown in Figure 4.
The source not only sends the VM’s memory directly

Why Live VM Migration?
• Why Migrate?

• Load Balancing

• Move VMs from highly loaded servers to lightly loaded servers

• Server maintenance

• When server needs to be upgraded

• Energy savings

• Move out VMs before shutting down servers to reduce energy usage

• Why live?

• To keep long-running jobs alive

• To keep network connections alive

• Broadly, to avoid disruptions to users of VM

• Why VM?

• Why not migrate individual processes?

• Process migration may leave residual dependencies (state) at source host

• E.g. system call redirection, shared memory, open files, inter-process communication,
etc.

Performance Goals in Live Migration

• Minimizing Downtime

• Reducing total migration time

• Avoiding interference with normal system
activity

• Minimizing network activity

Migrating Memory
• Pure stop-and-copy

– Freeze VM at source,

– Copy the VM’s pseudo-physical memory contents to target,

– Restart VM at target

– Long downtime.

– Minimal total migration time = downtime

• Pure Demand Paging:

– Freeze VM at source,

– Copy minimal execution context to target

• PC, Registers, non-pageable memory

– Restart VM at target,

– Pull memory contents form source as and when needed

– Smaller downtime

– Sloooow warm-up phase at target during page-faults across

network

Pre-copy migration

• DON’T freeze VM at source

• Let the VM continue to run

• Copy VM’s pseudo-physical memory contents to target over multiple iterations

– First iteration ➔ copy all pages.

– Each subsequent iteration ➔ copy pages that were dirtied by the VM during the

previous iteration

• Do a short stop-and-copy when number of dirty pages is “small enough”.

• But what if number of dirty pages never converges to a small enough
number?

– After a fixed number of iterations, give up and stop-and-copy.

pended and applications do not make progress.
Dynamic Self-Ballooning (DSB): Ballooning refers to

artificially requesting memory within a guest kernel and re-
leasing that memory back to the hypervisor. Ballooning
is used widely for the purpose of VM memory resizing by
both VMWare [35] and Xen [1], and relates to self-paging in
Nemesis [7]. However, it is not clear how current ballooning
mechanisms interact, if at all, with live VM migration tech-
niques. For instance, while Xen is capable of simple one-time
ballooning during migration and system boot time, there is
no explicit use of dynamic ballooning to reduce the memory
footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree [16]
to enable a guest kernel to dynamically return free mem-
ory to the hypervisor without explicit human intervention.
VMWare ESX server [35] includes dynamic ballooning and
idle memory tax, but the focus is not on reducing the VM
footprint before migration. Our DSB mechanism is simi-
lar in spirit to the above dynamic ballooning approaches.
However, to the best of our knowledge, DSB has not been
exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the
migration performance of both the pre-copy and post-copy
approaches with minimal runtime overhead.

3. DESIGN
In this section we present the design of post-copy live VM

migration. The performance of any live VM migration strat-
egy could be gauged by the following metrics.

1. Preparation Time: This is the time between initi-
ating migration and transferring the VM’s processor
state to the target node, during which the VM con-
tinues to execute and dirty its memory. For pre-copy,
this time includes the entire iterative memory copying
phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating
VM’s execution is stopped. At the minimum this in-
cludes the transfer of processor state. For pre-copy,
this transfer also includes any remaining dirty pages.
For post-copy this includes other minimal execution
state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming
the VM’s execution at the target and the end of migra-
tion altogether, at which point all dependencies on the
source must be eliminated. For pre-copy, one needs
only to re-schedule the target VM and destroy the
source copy. On the other hand, majority of our post-
copy approach operates in this period.

4. Pages Transferred: This is the total count of mem-
ory pages transferred, including duplicates, across all
of the above time periods. Pre-copy transfers most of
its pages during preparation time, whereas post-copy
transfers most during resume time.

5. Total Migration Time: This is the sum of all the
above times from start to finish. Total time is impor-
tant because it affects the release of resources on both
participating nodes as well as within the VMs on both
nodes. Until the completion of migration, we cannot
free the source VM’s memory.

6. Application Degradation: This is the extent to
which migration slows down the applications running
in the VM. Pre-copy must track dirtied pages by trap-

ping write accesses to each page, which significantly
slows down write-intensive workloads. Similarly, post-
copy needs to service network faults generated at the
target, which also slows down VM workloads.

3.1 Post-Copy and its Variants
In the basic approach, post-copy first suspends the mi-

grating VM at the source node, copies minimal processor
state to the target node, resumes the virtual machine, and
begins fetching memory pages over the network from the
source. The manner in which pages are fetched gives rise
to different variants of post-copy, each of which provides in-
cremental improvements. We employ a combination of four
techniques to fetch memory pages from the source: demand-
paging, active push, prepaging, and dynamic self-ballooning
(DSB). Demand paging ensures that each page is sent over
the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, ac-
tive push ensures that residual dependencies are removed
from the source host as quickly as possible, compared to the
non-deterministic copying iterations in pre-copy. Prepaging
uses hints from the VM’s page access patterns to reduce
both the number of major network faults and the duration
of the resume phase. DSB reduces the number of free pages
transferred during migration, improving the performance of
both pre-copy and post-copy. Figure 1 provides a high-level
contrast of how different stages of pre-copy and post-copy
relate to each other. Table 1 contrasts different migration

Time

Preparation (live)
Downtime

Post−Copy Prepaging

Resume Time (live)

Preparation (live)

Pre−Copy Rounds ...

Resume Time

Downtime

(a) Post−Copy Timeline

(a) Pre−Copy Timeline

(Non−pageable
Memory)

Round: 1 2 3 ... N (Dirty Memory)

Figure 1: Timeline for Pre-copy vs. Post-copy.

techniques, each of which is described below in detail.
Post-Copy via Demand Paging: The demand paging

variant of post-copy is the simplest and slowest option. Once
the VM resumes at the target, its memory accesses result in
page faults that can be serviced by requesting the referenced
page over the network from the source node. However, ser-
vicing each fault will significantly slow down the VM due to
the network’s round trip latency. Consequently, even though
each page is transferred only once, this approach consider-
ably lengthens the resume time and leaves long-term residual
dependencies in the form of unfetched pages, possibly for an
indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable from the view-
point of total migration time and application degradation.

So what’s the catch? 
 How do we track dirtied pages?

• Mark the VM’s memory pages as read-only after
each iteration.

• Trap write operations via hypervisor to xend and
track dirtied pages.

• Reset after each iteration

• Works well as long as writes are infrequent

Optimizations

• Limit the bandwidth used by migration

• To minimize impact on running services

• Stun Rogue Processes

– Those that don’t stop dirtying memory

• Free Page Cache Pages

– Can be re-cached at target

– Potential performance hit

10

Post-copy migration

• Freeze the VM first

• Migrate CPU state and minimum state to destination

• Start VM at the target, but without its memory!

• Transfer memory by concurrently doing the following

• Demand paging over network

• Actively pushing from source

• Hopefully most pages will be pushed BEFORE they are demand paged.

• Advantage:

• Each page transferred over the network only once.

• Deterministic total migration time

• Disadvantage:

• Cold start penalty at the destination

• If migration fails, then VM is lost.

pended and applications do not make progress.
Dynamic Self-Ballooning (DSB): Ballooning refers to

artificially requesting memory within a guest kernel and re-
leasing that memory back to the hypervisor. Ballooning
is used widely for the purpose of VM memory resizing by
both VMWare [35] and Xen [1], and relates to self-paging in
Nemesis [7]. However, it is not clear how current ballooning
mechanisms interact, if at all, with live VM migration tech-
niques. For instance, while Xen is capable of simple one-time
ballooning during migration and system boot time, there is
no explicit use of dynamic ballooning to reduce the memory
footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree [16]
to enable a guest kernel to dynamically return free mem-
ory to the hypervisor without explicit human intervention.
VMWare ESX server [35] includes dynamic ballooning and
idle memory tax, but the focus is not on reducing the VM
footprint before migration. Our DSB mechanism is simi-
lar in spirit to the above dynamic ballooning approaches.
However, to the best of our knowledge, DSB has not been
exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the
migration performance of both the pre-copy and post-copy
approaches with minimal runtime overhead.

3. DESIGN
In this section we present the design of post-copy live VM

migration. The performance of any live VM migration strat-
egy could be gauged by the following metrics.

1. Preparation Time: This is the time between initi-
ating migration and transferring the VM’s processor
state to the target node, during which the VM con-
tinues to execute and dirty its memory. For pre-copy,
this time includes the entire iterative memory copying
phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating
VM’s execution is stopped. At the minimum this in-
cludes the transfer of processor state. For pre-copy,
this transfer also includes any remaining dirty pages.
For post-copy this includes other minimal execution
state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming
the VM’s execution at the target and the end of migra-
tion altogether, at which point all dependencies on the
source must be eliminated. For pre-copy, one needs
only to re-schedule the target VM and destroy the
source copy. On the other hand, majority of our post-
copy approach operates in this period.

4. Pages Transferred: This is the total count of mem-
ory pages transferred, including duplicates, across all
of the above time periods. Pre-copy transfers most of
its pages during preparation time, whereas post-copy
transfers most during resume time.

5. Total Migration Time: This is the sum of all the
above times from start to finish. Total time is impor-
tant because it affects the release of resources on both
participating nodes as well as within the VMs on both
nodes. Until the completion of migration, we cannot
free the source VM’s memory.

6. Application Degradation: This is the extent to
which migration slows down the applications running
in the VM. Pre-copy must track dirtied pages by trap-

ping write accesses to each page, which significantly
slows down write-intensive workloads. Similarly, post-
copy needs to service network faults generated at the
target, which also slows down VM workloads.

3.1 Post-Copy and its Variants
In the basic approach, post-copy first suspends the mi-

grating VM at the source node, copies minimal processor
state to the target node, resumes the virtual machine, and
begins fetching memory pages over the network from the
source. The manner in which pages are fetched gives rise
to different variants of post-copy, each of which provides in-
cremental improvements. We employ a combination of four
techniques to fetch memory pages from the source: demand-
paging, active push, prepaging, and dynamic self-ballooning
(DSB). Demand paging ensures that each page is sent over
the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, ac-
tive push ensures that residual dependencies are removed
from the source host as quickly as possible, compared to the
non-deterministic copying iterations in pre-copy. Prepaging
uses hints from the VM’s page access patterns to reduce
both the number of major network faults and the duration
of the resume phase. DSB reduces the number of free pages
transferred during migration, improving the performance of
both pre-copy and post-copy. Figure 1 provides a high-level
contrast of how different stages of pre-copy and post-copy
relate to each other. Table 1 contrasts different migration

Time

Preparation (live)
Downtime

Post−Copy Prepaging

Resume Time (live)

Preparation (live)

Pre−Copy Rounds ...

Resume Time

Downtime

(a) Post−Copy Timeline

(a) Pre−Copy Timeline

(Non−pageable
Memory)

Round: 1 2 3 ... N (Dirty Memory)

Figure 1: Timeline for Pre-copy vs. Post-copy.

techniques, each of which is described below in detail.
Post-Copy via Demand Paging: The demand paging

variant of post-copy is the simplest and slowest option. Once
the VM resumes at the target, its memory accesses result in
page faults that can be serviced by requesting the referenced
page over the network from the source node. However, ser-
vicing each fault will significantly slow down the VM due to
the network’s round trip latency. Consequently, even though
each page is transferred only once, this approach consider-
ably lengthens the resume time and leaves long-term residual
dependencies in the form of unfetched pages, possibly for an
indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable from the view-
point of total migration time and application degradation.

11

Hybrid pre/post-copy

• Combines the benefits & drawbacks of both

1. Perform one or more rounds of live pre-copy rounds

2. Pause VM and transfer execution state

3. Use post-copy to transfer any remaining dirty pages

from source

pended and applications do not make progress.
Dynamic Self-Ballooning (DSB): Ballooning refers to

artificially requesting memory within a guest kernel and re-
leasing that memory back to the hypervisor. Ballooning
is used widely for the purpose of VM memory resizing by
both VMWare [35] and Xen [1], and relates to self-paging in
Nemesis [7]. However, it is not clear how current ballooning
mechanisms interact, if at all, with live VM migration tech-
niques. For instance, while Xen is capable of simple one-time
ballooning during migration and system boot time, there is
no explicit use of dynamic ballooning to reduce the memory
footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree [16]
to enable a guest kernel to dynamically return free mem-
ory to the hypervisor without explicit human intervention.
VMWare ESX server [35] includes dynamic ballooning and
idle memory tax, but the focus is not on reducing the VM
footprint before migration. Our DSB mechanism is simi-
lar in spirit to the above dynamic ballooning approaches.
However, to the best of our knowledge, DSB has not been
exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the
migration performance of both the pre-copy and post-copy
approaches with minimal runtime overhead.

3. DESIGN
In this section we present the design of post-copy live VM

migration. The performance of any live VM migration strat-
egy could be gauged by the following metrics.

1. Preparation Time: This is the time between initi-
ating migration and transferring the VM’s processor
state to the target node, during which the VM con-
tinues to execute and dirty its memory. For pre-copy,
this time includes the entire iterative memory copying
phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating
VM’s execution is stopped. At the minimum this in-
cludes the transfer of processor state. For pre-copy,
this transfer also includes any remaining dirty pages.
For post-copy this includes other minimal execution
state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming
the VM’s execution at the target and the end of migra-
tion altogether, at which point all dependencies on the
source must be eliminated. For pre-copy, one needs
only to re-schedule the target VM and destroy the
source copy. On the other hand, majority of our post-
copy approach operates in this period.

4. Pages Transferred: This is the total count of mem-
ory pages transferred, including duplicates, across all
of the above time periods. Pre-copy transfers most of
its pages during preparation time, whereas post-copy
transfers most during resume time.

5. Total Migration Time: This is the sum of all the
above times from start to finish. Total time is impor-
tant because it affects the release of resources on both
participating nodes as well as within the VMs on both
nodes. Until the completion of migration, we cannot
free the source VM’s memory.

6. Application Degradation: This is the extent to
which migration slows down the applications running
in the VM. Pre-copy must track dirtied pages by trap-

ping write accesses to each page, which significantly
slows down write-intensive workloads. Similarly, post-
copy needs to service network faults generated at the
target, which also slows down VM workloads.

3.1 Post-Copy and its Variants
In the basic approach, post-copy first suspends the mi-

grating VM at the source node, copies minimal processor
state to the target node, resumes the virtual machine, and
begins fetching memory pages over the network from the
source. The manner in which pages are fetched gives rise
to different variants of post-copy, each of which provides in-
cremental improvements. We employ a combination of four
techniques to fetch memory pages from the source: demand-
paging, active push, prepaging, and dynamic self-ballooning
(DSB). Demand paging ensures that each page is sent over
the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, ac-
tive push ensures that residual dependencies are removed
from the source host as quickly as possible, compared to the
non-deterministic copying iterations in pre-copy. Prepaging
uses hints from the VM’s page access patterns to reduce
both the number of major network faults and the duration
of the resume phase. DSB reduces the number of free pages
transferred during migration, improving the performance of
both pre-copy and post-copy. Figure 1 provides a high-level
contrast of how different stages of pre-copy and post-copy
relate to each other. Table 1 contrasts different migration

Time

Preparation (live)
Downtime

Post−Copy Prepaging

Resume Time (live)

Preparation (live)

Pre−Copy Rounds ...

Resume Time

Downtime

(a) Post−Copy Timeline

(a) Pre−Copy Timeline

(Non−pageable
Memory)

Round: 1 2 3 ... N (Dirty Memory)

Figure 1: Timeline for Pre-copy vs. Post-copy.

techniques, each of which is described below in detail.
Post-Copy via Demand Paging: The demand paging

variant of post-copy is the simplest and slowest option. Once
the VM resumes at the target, its memory accesses result in
page faults that can be serviced by requesting the referenced
page over the network from the source node. However, ser-
vicing each fault will significantly slow down the VM due to
the network’s round trip latency. Consequently, even though
each page is transferred only once, this approach consider-
ably lengthens the resume time and leaves long-term residual
dependencies in the form of unfetched pages, possibly for an
indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable from the view-
point of total migration time and application degradation.

pended and applications do not make progress.
Dynamic Self-Ballooning (DSB): Ballooning refers to

artificially requesting memory within a guest kernel and re-
leasing that memory back to the hypervisor. Ballooning
is used widely for the purpose of VM memory resizing by
both VMWare [35] and Xen [1], and relates to self-paging in
Nemesis [7]. However, it is not clear how current ballooning
mechanisms interact, if at all, with live VM migration tech-
niques. For instance, while Xen is capable of simple one-time
ballooning during migration and system boot time, there is
no explicit use of dynamic ballooning to reduce the memory
footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree [16]
to enable a guest kernel to dynamically return free mem-
ory to the hypervisor without explicit human intervention.
VMWare ESX server [35] includes dynamic ballooning and
idle memory tax, but the focus is not on reducing the VM
footprint before migration. Our DSB mechanism is simi-
lar in spirit to the above dynamic ballooning approaches.
However, to the best of our knowledge, DSB has not been
exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the
migration performance of both the pre-copy and post-copy
approaches with minimal runtime overhead.

3. DESIGN
In this section we present the design of post-copy live VM

migration. The performance of any live VM migration strat-
egy could be gauged by the following metrics.

1. Preparation Time: This is the time between initi-
ating migration and transferring the VM’s processor
state to the target node, during which the VM con-
tinues to execute and dirty its memory. For pre-copy,
this time includes the entire iterative memory copying
phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating
VM’s execution is stopped. At the minimum this in-
cludes the transfer of processor state. For pre-copy,
this transfer also includes any remaining dirty pages.
For post-copy this includes other minimal execution
state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming
the VM’s execution at the target and the end of migra-
tion altogether, at which point all dependencies on the
source must be eliminated. For pre-copy, one needs
only to re-schedule the target VM and destroy the
source copy. On the other hand, majority of our post-
copy approach operates in this period.

4. Pages Transferred: This is the total count of mem-
ory pages transferred, including duplicates, across all
of the above time periods. Pre-copy transfers most of
its pages during preparation time, whereas post-copy
transfers most during resume time.

5. Total Migration Time: This is the sum of all the
above times from start to finish. Total time is impor-
tant because it affects the release of resources on both
participating nodes as well as within the VMs on both
nodes. Until the completion of migration, we cannot
free the source VM’s memory.

6. Application Degradation: This is the extent to
which migration slows down the applications running
in the VM. Pre-copy must track dirtied pages by trap-

ping write accesses to each page, which significantly
slows down write-intensive workloads. Similarly, post-
copy needs to service network faults generated at the
target, which also slows down VM workloads.

3.1 Post-Copy and its Variants
In the basic approach, post-copy first suspends the mi-

grating VM at the source node, copies minimal processor
state to the target node, resumes the virtual machine, and
begins fetching memory pages over the network from the
source. The manner in which pages are fetched gives rise
to different variants of post-copy, each of which provides in-
cremental improvements. We employ a combination of four
techniques to fetch memory pages from the source: demand-
paging, active push, prepaging, and dynamic self-ballooning
(DSB). Demand paging ensures that each page is sent over
the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, ac-
tive push ensures that residual dependencies are removed
from the source host as quickly as possible, compared to the
non-deterministic copying iterations in pre-copy. Prepaging
uses hints from the VM’s page access patterns to reduce
both the number of major network faults and the duration
of the resume phase. DSB reduces the number of free pages
transferred during migration, improving the performance of
both pre-copy and post-copy. Figure 1 provides a high-level
contrast of how different stages of pre-copy and post-copy
relate to each other. Table 1 contrasts different migration

Time

Preparation (live)
Downtime

Post−Copy Prepaging

Resume Time (live)

Preparation (live)

Pre−Copy Rounds ...

Resume Time

Downtime

(a) Post−Copy Timeline

(a) Pre−Copy Timeline

(Non−pageable
Memory)

Round: 1 2 3 ... N (Dirty Memory)

Figure 1: Timeline for Pre-copy vs. Post-copy.

techniques, each of which is described below in detail.
Post-Copy via Demand Paging: The demand paging

variant of post-copy is the simplest and slowest option. Once
the VM resumes at the target, its memory accesses result in
page faults that can be serviced by requesting the referenced
page over the network from the source node. However, ser-
vicing each fault will significantly slow down the VM due to
the network’s round trip latency. Consequently, even though
each page is transferred only once, this approach consider-
ably lengthens the resume time and leaves long-term residual
dependencies in the form of unfetched pages, possibly for an
indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable from the view-
point of total migration time and application degradation.

pended and applications do not make progress.
Dynamic Self-Ballooning (DSB): Ballooning refers to

artificially requesting memory within a guest kernel and re-
leasing that memory back to the hypervisor. Ballooning
is used widely for the purpose of VM memory resizing by
both VMWare [35] and Xen [1], and relates to self-paging in
Nemesis [7]. However, it is not clear how current ballooning
mechanisms interact, if at all, with live VM migration tech-
niques. For instance, while Xen is capable of simple one-time
ballooning during migration and system boot time, there is
no explicit use of dynamic ballooning to reduce the memory
footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree [16]
to enable a guest kernel to dynamically return free mem-
ory to the hypervisor without explicit human intervention.
VMWare ESX server [35] includes dynamic ballooning and
idle memory tax, but the focus is not on reducing the VM
footprint before migration. Our DSB mechanism is simi-
lar in spirit to the above dynamic ballooning approaches.
However, to the best of our knowledge, DSB has not been
exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the
migration performance of both the pre-copy and post-copy
approaches with minimal runtime overhead.

3. DESIGN
In this section we present the design of post-copy live VM

migration. The performance of any live VM migration strat-
egy could be gauged by the following metrics.

1. Preparation Time: This is the time between initi-
ating migration and transferring the VM’s processor
state to the target node, during which the VM con-
tinues to execute and dirty its memory. For pre-copy,
this time includes the entire iterative memory copying
phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating
VM’s execution is stopped. At the minimum this in-
cludes the transfer of processor state. For pre-copy,
this transfer also includes any remaining dirty pages.
For post-copy this includes other minimal execution
state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming
the VM’s execution at the target and the end of migra-
tion altogether, at which point all dependencies on the
source must be eliminated. For pre-copy, one needs
only to re-schedule the target VM and destroy the
source copy. On the other hand, majority of our post-
copy approach operates in this period.

4. Pages Transferred: This is the total count of mem-
ory pages transferred, including duplicates, across all
of the above time periods. Pre-copy transfers most of
its pages during preparation time, whereas post-copy
transfers most during resume time.

5. Total Migration Time: This is the sum of all the
above times from start to finish. Total time is impor-
tant because it affects the release of resources on both
participating nodes as well as within the VMs on both
nodes. Until the completion of migration, we cannot
free the source VM’s memory.

6. Application Degradation: This is the extent to
which migration slows down the applications running
in the VM. Pre-copy must track dirtied pages by trap-

ping write accesses to each page, which significantly
slows down write-intensive workloads. Similarly, post-
copy needs to service network faults generated at the
target, which also slows down VM workloads.

3.1 Post-Copy and its Variants
In the basic approach, post-copy first suspends the mi-

grating VM at the source node, copies minimal processor
state to the target node, resumes the virtual machine, and
begins fetching memory pages over the network from the
source. The manner in which pages are fetched gives rise
to different variants of post-copy, each of which provides in-
cremental improvements. We employ a combination of four
techniques to fetch memory pages from the source: demand-
paging, active push, prepaging, and dynamic self-ballooning
(DSB). Demand paging ensures that each page is sent over
the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, ac-
tive push ensures that residual dependencies are removed
from the source host as quickly as possible, compared to the
non-deterministic copying iterations in pre-copy. Prepaging
uses hints from the VM’s page access patterns to reduce
both the number of major network faults and the duration
of the resume phase. DSB reduces the number of free pages
transferred during migration, improving the performance of
both pre-copy and post-copy. Figure 1 provides a high-level
contrast of how different stages of pre-copy and post-copy
relate to each other. Table 1 contrasts different migration

Time

Preparation (live)
Downtime

Post−Copy Prepaging

Resume Time (live)

Preparation (live)

Pre−Copy Rounds ...

Resume Time

Downtime

(a) Post−Copy Timeline

(a) Pre−Copy Timeline

(Non−pageable
Memory)

Round: 1 2 3 ... N (Dirty Memory)

Figure 1: Timeline for Pre-copy vs. Post-copy.

techniques, each of which is described below in detail.
Post-Copy via Demand Paging: The demand paging

variant of post-copy is the simplest and slowest option. Once
the VM resumes at the target, its memory accesses result in
page faults that can be serviced by requesting the referenced
page over the network from the source node. However, ser-
vicing each fault will significantly slow down the VM due to
the network’s round trip latency. Consequently, even though
each page is transferred only once, this approach consider-
ably lengthens the resume time and leaves long-term residual
dependencies in the form of unfetched pages, possibly for an
indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable from the view-
point of total migration time and application degradation.

pended and applications do not make progress.
Dynamic Self-Ballooning (DSB): Ballooning refers to

artificially requesting memory within a guest kernel and re-
leasing that memory back to the hypervisor. Ballooning
is used widely for the purpose of VM memory resizing by
both VMWare [35] and Xen [1], and relates to self-paging in
Nemesis [7]. However, it is not clear how current ballooning
mechanisms interact, if at all, with live VM migration tech-
niques. For instance, while Xen is capable of simple one-time
ballooning during migration and system boot time, there is
no explicit use of dynamic ballooning to reduce the memory
footprint before live migration. Additionally, self-ballooning
has been recently committed into the Xen source tree [16]
to enable a guest kernel to dynamically return free mem-
ory to the hypervisor without explicit human intervention.
VMWare ESX server [35] includes dynamic ballooning and
idle memory tax, but the focus is not on reducing the VM
footprint before migration. Our DSB mechanism is simi-
lar in spirit to the above dynamic ballooning approaches.
However, to the best of our knowledge, DSB has not been
exploited systematically to date for improving the perfor-
mance of live migration. Our work uses DSB to improve the
migration performance of both the pre-copy and post-copy
approaches with minimal runtime overhead.

3. DESIGN
In this section we present the design of post-copy live VM

migration. The performance of any live VM migration strat-
egy could be gauged by the following metrics.

1. Preparation Time: This is the time between initi-
ating migration and transferring the VM’s processor
state to the target node, during which the VM con-
tinues to execute and dirty its memory. For pre-copy,
this time includes the entire iterative memory copying
phase, whereas it is negligible for post-copy.

2. Downtime: This is time during which the migrating
VM’s execution is stopped. At the minimum this in-
cludes the transfer of processor state. For pre-copy,
this transfer also includes any remaining dirty pages.
For post-copy this includes other minimal execution
state, if any, needed by the VM to start at the target.

3. Resume Time: This is the time between resuming
the VM’s execution at the target and the end of migra-
tion altogether, at which point all dependencies on the
source must be eliminated. For pre-copy, one needs
only to re-schedule the target VM and destroy the
source copy. On the other hand, majority of our post-
copy approach operates in this period.

4. Pages Transferred: This is the total count of mem-
ory pages transferred, including duplicates, across all
of the above time periods. Pre-copy transfers most of
its pages during preparation time, whereas post-copy
transfers most during resume time.

5. Total Migration Time: This is the sum of all the
above times from start to finish. Total time is impor-
tant because it affects the release of resources on both
participating nodes as well as within the VMs on both
nodes. Until the completion of migration, we cannot
free the source VM’s memory.

6. Application Degradation: This is the extent to
which migration slows down the applications running
in the VM. Pre-copy must track dirtied pages by trap-

ping write accesses to each page, which significantly
slows down write-intensive workloads. Similarly, post-
copy needs to service network faults generated at the
target, which also slows down VM workloads.

3.1 Post-Copy and its Variants
In the basic approach, post-copy first suspends the mi-

grating VM at the source node, copies minimal processor
state to the target node, resumes the virtual machine, and
begins fetching memory pages over the network from the
source. The manner in which pages are fetched gives rise
to different variants of post-copy, each of which provides in-
cremental improvements. We employ a combination of four
techniques to fetch memory pages from the source: demand-
paging, active push, prepaging, and dynamic self-ballooning
(DSB). Demand paging ensures that each page is sent over
the network only once, unlike in pre-copy where repeatedly
dirtied pages could be resent multiple times. Similarly, ac-
tive push ensures that residual dependencies are removed
from the source host as quickly as possible, compared to the
non-deterministic copying iterations in pre-copy. Prepaging
uses hints from the VM’s page access patterns to reduce
both the number of major network faults and the duration
of the resume phase. DSB reduces the number of free pages
transferred during migration, improving the performance of
both pre-copy and post-copy. Figure 1 provides a high-level
contrast of how different stages of pre-copy and post-copy
relate to each other. Table 1 contrasts different migration

Time

Preparation (live)
Downtime

Post−Copy Prepaging

Resume Time (live)

Preparation (live)

Pre−Copy Rounds ...

Resume Time

Downtime

(a) Post−Copy Timeline

(a) Pre−Copy Timeline

(Non−pageable
Memory)

Round: 1 2 3 ... N (Dirty Memory)

Figure 1: Timeline for Pre-copy vs. Post-copy.

techniques, each of which is described below in detail.
Post-Copy via Demand Paging: The demand paging

variant of post-copy is the simplest and slowest option. Once
the VM resumes at the target, its memory accesses result in
page faults that can be serviced by requesting the referenced
page over the network from the source node. However, ser-
vicing each fault will significantly slow down the VM due to
the network’s round trip latency. Consequently, even though
each page is transferred only once, this approach consider-
ably lengthens the resume time and leaves long-term residual
dependencies in the form of unfetched pages, possibly for an
indeterminate duration. Thus, post-copy performance for
this variant by itself would be unacceptable from the view-
point of total migration time and application degradation.

Migrating Network Connections
• Within a LAN,

• the migrated VM carries its IP address, MAC address, and all protocol
state, including any open sockets

• Backward (re)learning delay at the network switches

– Switches needs to re-learn the new location of migrated VM’s MAC

address

– Solution: Send an unsolicited ARP reply from the target host.

– Intermediate switches will re-learn automatically.

– Few in-flight packets might get lost.

• Across a WAN (wide-area network)

• Source and destination subnets may have different IP addresses.

• Active network connections may need to be tunneled via VPN or similar

mechanisms.

Storage Migration
• Many gigabytes of local disk image possible.

• For LAN

– Assume the storage is over the network and remains

accessible from the new target machine.

– E.g. Network File System (NFS), or Network Block

Device(NBD), or iSCSI etc.

• For WAN

• Disk image may need to be transferred.

• Can use pre-copy or post-copy for disk images,

• Combined bandwidth saving optimizations such as

compression, and/or de-duplication.

14

Scatter-Gather migration 4

9LUWXDO�

0DFKLQH

6RXUFH�+RVW
0LJUDWLRQ
0DQDJHU

DW

6RXUFH

0LJUDWLRQ
0DQDJHU

DW

'HVWLQDWLRQ

9LUWXDO�

0DFKLQH

'HVWLQDWLRQ�+RVW

9LUWXDOL]HG��0HPRU\�'HYLFH�RYHU�,QWHUPHGLDWH�+RVWV

,� ,1,�

:ULWH�3DJHV 5HDG�3DJHV

*DWKHU6FDWWHU

,QWHUPHGLDWH�+RVWV

&RQWURO�7&3�
&RQQHFWLRQ

Fig. 4. Scatter-Gather migration: The VM’s state is trans-
ferred through intermediaries. A direct connection be-
tween the source and destination carries control informa-
tion, faulted pages, and some actively pushed pages.

to the destination, to the extent allowed by the des-
tination’s reception bandwidth, but also scatters any
remaining memory to the intermediaries I1 ... IN . The
destination concurrently gathers the scattered content
from the intermediaries at its own pace. The direct
TCP connection between the source and destination is
also used to exchange the VM’s CPU execution state,
any demand-paged memory, and control information.
Unlike traditional migration, the direct connection lasts
only until the source evicts the entire VM.

For simplicity and without loss of generality, the dis-
cussion below treats the destination and intermediaries
as distinct entities. We assume that the destination host is
selected either by an administrator or an automated VM
placement algorithm. Scatter-Gather can be used with
any VM Placement algorithm.

4.1 Virtualized Memory Device
We begin by introducing the Virtualized Memory Device
(VMD) layer, through which the source transfers the
bulk of the VM’s memory to the destination. Although
Scatter-Gather can be implemented without it, the VMD
layer simplifies and modularized the design.

The VMD layer aggregates the available free memory
of all intermediaries and presents the collection as a
block device, one per VM being migrated. The Migration
Manager at the source writes (scatters) to the block
device the part of the VM’s memory that is not sent
directly to the destination. The Migration Manager at
the destination concurrently reads (gathers) the VM’s
memory from the block device. No physical memory is
reserved in advance at the intermediaries; instead, the
VMD layer at the source uses the memory availability
information at the intermediaries to dynamically decide
where to scatter the memory pages (details in Section 5).

4.2 Scatter Phase
The goal of the scatter phase is to quickly evict the VM’s
memory and execution state from the source host. First,

a control TCP connection is established between the
Migration Managers at the source and the destination.
Next, the VM’s CPU state is transferred to the destina-
tion where the VM is resumed immediately (as in post-
copy migration). Since the VM’s memory still resides at
the source host, the VM generates page-faults as it ac-
cesses its memory. The destination’s Migration Manager
sends all page-fault requests during the scatter phase to
the source’s Migration Manager over the control TCP
connection, which then responds with the faulted page.
This step is similar to the demand-paging component
of traditional post-copy migration. However, relying on
demand-paging alone would be very slow.

To speed up the eviction of VM’s memory, the Mi-
gration Manager at the source also actively scatters the
VM’s pages out of the source to intermediaries and
the destination. To send pages to the intermediaries,
the Migration Manager writes the VM’s memory pages
to the block device which was exported by the VMD.
Each page written to the VMD is sent to one of the
intermediaries depending on its offset in the VM’s mem-
ory. To improve the fault-tolerance of migration, each
page could also be replicated to multiple intermediaries.
For each page written to the VMD, the source sends
the corresponding control information directly to the
destination’s Migration Manager over the TCP connec-
tion. The control information consists of the address
of each page that was scattered and its status, which
may indicate whether any content optimization, such
as compression or deduplication, was applied to the
page. This information is used later by the Migration
Manager at the destination to gather the VM’s pages
from the VMD. Once the VM’s entire memory has been
evicted, the VM can be deprovisioned at the source and
its memory reused for other VMs.

4.3 Gather Phase
The gather phase retrieves the VM’s memory pages from
the intermediaries and the source. This phase runs con-
currently with the scatter phase at the source. As soon
as the destination receives the VM’s execution state from
the source, it starts executing the VM. The gather phase
consists of two components: (a) pre-paging, or actively
collecting the VM’s pages from the intermediaries and
the source and (b) demand-paging the faulted pages
from the source.

In pre-paging, the destination’s Migration Manager
opens a block device, exported by the VMD, to which
the source host scatters the VM’s memory. In addition,
it listens on the control TCP connection on which the
source sends information about the scattered pages. The
destination’s Migration Manager uses the per-page con-
trol information received from the source to copy the re-
ceived pages from the VMD into the VM’s memory. Thus
the control TCP connection ensures that the destination
reads each page from the VMD only after it has been
written to the VMD by the source. Pages actively pushed

Multi-VM (Gang) Migration

..

VM Migration

Single Copy
Transfer

Identical Page Identical Page

..

VM2

Source Machine

VM1

....

..

VMn

..

VM2

Target Machine

VM1

....

..

VMn

..

.. ..

Shared Memory Shared Memory

• De-duplicate memory pages to reduce network traffic.

• Identify identical pages across multiple VMs

• By comparing byte-wise (expensive), or checksum (cheaper)

• Send only one copy of identical page to destination node

• Destination Node replicates the pages to multiple VMs.

