
OS and its Three Pieces

Kartik Gopalan

What is an OS?

What is an OS?

• A bunch of software and data residing somewhere in memory.

• But its not just any software.

• OS is the most privileged software in a computer.

• Privileged means that OS can do special things, like write to
disk, talk over the network, control memory and CPU usage, etc.

• OS manages all system resources

• CPU, Memory, and I/O devices

But when does the OS “run”?

But when does the OS “run”?
Four ways to invoke OS code

OS

Process
1

Process
N

Hardware
1

Hardware
NCPU

Syscall
Handlers

Exception
Handlers

Interrupt
Handlers

(d) Kernel
Threads

(a) System Calls

(b) Exceptions (c) Interrupts

Three major tasks of OS

1. Virtualization

2. Concurrency

3. Persistence

Virtualization
• Making a physical resource look like something else (virtual).

• Why virtualize?

• To make the computer easier to use and program.

• Examples

• Make one physical CPU look like multiple virtual CPUs

• One or more virtual CPUs per process

• Make physical memory (RAM) and look like multiple virtual memory spaces

• One or more virtual memory spaces per process

• Make physical disk look like a file system

• Physical disk = raw bytes.

• File system = user’s view of data on disk.

Concurrency

• Juggling many tasks together

• Examples

• One physical CPU runs many processes

• One process runs many threads

• One OS juggles process execution, system calls, interrupts,
exceptions, CPU scheduling, memory management, etc.

• There’s a LOT of concurrency in modern computer systems.

• And its the source of most of the system complexity.

Persistence
• Storing data “forever”

• On hard disks, SSDs, CDs, floppy disks, tapes, phono discs, paper!

• But its not enough to just store raw bytes

• Users want to

• Organize data (via file systems)

• Share data (via network or cloud)

• Access data easily

• …and recover data when lost.

• Protect data from being stolen.

History of OS
• 1950s and 1960s: Early operating systems were

simple batch processing systems

• Users provided their own “OS” as libraries.

• 1960s and1970s: Multi-programming on mainframes

• Concurrency, memory protection, Kernel mode,
system calls, hardware privilege levels, trap
handling

• Earliest Multics hardware and OS on IBM
mainframes

• Which led to the first UNIX OS which pioneered
file systems, shell, pipes, and the C language.

• 1980s: Personal computing era

• MacOS, IBM PC and its DOS, Windows, and so
forth.

• Unfortunately, many lessons from earlier multi-
programming era were forgotten and had to be
re-learned (painfully).

• 1980s also saw the fragmentation of UNIX

• Each big company had its own version (IBM,
Apple, HP, SUN, SGI, NCR, AT&T….)

• LOT of legal wrangling over IP and copyrights

• 1990s: Then came BSD and Linux

• Open source.

• Led the way to modern OSes and cloud
platforms

• 1990s also saw wider adoption of threads and
parallelism

• 2000 and beyond: Mobile device OS and
hypervisors

• Android, iOS

• VMWare ESX, Xen, Linux/KVM etc.

