
Processes

Kartik Gopalan

References:
• Chapter 2 of the Tanenbaum’s book
• Chapter 4 of OSTEP book
• man pages in any UNIX/Linux system

Process versus Program

• Program is a passive executable file stored in the disk
• Contains static code and static data

• Process is a program in execution.

• There can be multiple processs running the same program
• Example: many users can run “ls” at the same time

What’s in a process?
• Memory

• Code
• Static and dynamic data
• Procedure call stack

• CPU state
• Program counter
• Stack pointer
• General purpose registers, etc

• I/O state
• Open files, devices, network

3

Data

Heap

Gap

Stack

MAX

0
Code

Typical memory layout of a process

Process Hierarchy Tree

• A created two child processes, B and C

• B created three child processes, D, E, and F

Parent of B and C

Leaf
Child of A

Parent of D, E, F

System calls to control a process
• fork() - Create a process

• exec() - Run a new program
• More accurately: Replace the current process with a

new program image

• wait() or waitpid() - wait for a child process to terminate

• exit() - Terminate the calling process

Example : fork() and waitpid()
https://oscourse.github.io/examples/fork_ex.c

 pid = fork();

 if (pid < 0) {
 perror("fork failed:”);
 exit(1);
 }

 if (pid == 0) { // Child executes this block
 printf(“This is the child\n");
 exit(0);
 }

 if (pid > 0) { //Parent executes this block

 printf(“This is parent. The child is %d\n", pid);

ret = waitpid(pid, &status, 0);
if (ret < 0) {

perror(“waitpid failed:”)
exit(2);

}

printf(“Child exited with status %d\n”, status);
exit(0);

•fork() is called once, but it returns twice!!
• in the parent and the child

• Child is an exact “copy” of parent.

• Return value of fork in child = 0
• Return value of fork in parent =

[process ID of child]

• fork’s return value lets the parent and
child take different code paths.

Parent Child
fork()

https://oscourse.github.io/examples/fork_ex.c

exec() - Example code
https://oscourse.github.io/examples/exec_ex.c

if ((pid = fork()) < 0) {
fprintf(stderr, "fork failed\n");
exit(1);
}

if (pid == 0) {
if(execlp("echo", "echo", "Hello from

the child", (char *) NULL) == -1)
fprintf(stderr, "execl failed\n");

exit(2);
}

printf("parent carries on\n");

• exec() replaces the caller’s memory with a
new program image.

• exec() is called once but doesn’t return!!
• All I/O descriptors that were open before

exec() stay open after exec().
• I/O descriptors = file, socket, pipe etc.

• This property is very useful for
implementing filters.

Parent Child
fork() exec() New

program
image

https://oscourse.github.io/examples/exec_ex.c

Different Types of exec()
•int execl(char * pathname, char * arg0, … , (char *)0);

• Full pathname + long listing of arguments

•int execv(char * pathname, char * argv[]);
• Full pathname + arguments in an array

•int execle(char * pathname, char * arg0, … , (char *)0, char
envp[]);

• Full pathname + long listing of arguments + environment variables

•int execve(char * pathname, char * argv[], char envp[]);
• Full pathname + arguments in an array + environment variables

•int execlp(char * filename, char * arg0, … , (char *)0);
• Short pathname + long listing of arguments

•int execvp(char * filename, char * argv[]);
• Short pathname + arguments in an array

•More info: check “man 3 exec”

wait() and exit()

• wait() and waitpid()
• Called by parent to wait for child to terminate

• Terminating a process
• Either return from main()
• Or call exit(status) anywhere in the code

• Status is retrieved by the parent using wait().
• 0 for normal status, non-zero for error

Scheduling processes on the CPU
• Time-sharing (temporal multiplexing)
• Many processes share one or more CPUs

• Scheduling algorithms depend on performance objectives
• Round-robin, FIFO, Shortest Job First, Fair scheduling etc

• Linux implements CFS
• So-called “completely” fair scheduling

CPUWho’s
Next?

CPU Scheduler
Queue of Ready Process

Process Lifecycle

• Ready
• Process is ready to execute, but not yet executing
• Its waiting in the scheduling queue for the CPU scheduler to pick it up.

• Running
• Process is executing on the CPU

• Blocked
• Process is waiting (sleeping) for some event to occur.
• Once the event occurs, process will be woken up, and placed on the scheduling queue.

Example 1: Multiple processes sharing CPU

6 THE ABSTRACTION: THE PROCESS

Running Ready

Blocked

Descheduled

Scheduled

I/O: initiate I/O: done

Figure 4.2: Process: State Transitions

If we were to map these states to a graph, we would arrive at the di-
agram in Figure 4.2. As you can see in the diagram, a process can be
moved between the ready and running states at the discretion of the OS.
Being moved from ready to running means the process has been sched-
uled; being moved from running to ready means the process has been
descheduled. Once a process has become blocked (e.g., by initiating an
I/O operation), the OS will keep it as such until some event occurs (e.g.,
I/O completion); at that point, the process moves to the ready state again
(and potentially immediately to running again, if the OS so decides).

Let’s look at an example of how two processes might transition through
some of these states. First, imagine two processes running, each of which
only use the CPU (they do no I/O). In this case, a trace of the state of each
process might look like this (Figure 4.3).

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready
4 Running Ready Process0 now done
5 – Running
6 – Running
7 – Running
8 – Running Process1 now done

Figure 4.3: Tracing Process State: CPU Only

In this next example, the first process issues an I/O after running for
some time. At that point, the process is blocked, giving the other process
a chance to run. Figure 4.4 shows a trace of this scenario.

More specifically, Process0 initiates an I/O and becomes blocked wait-
ing for it to complete; processes become blocked, for example, when read-

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

THE ABSTRACTION: THE PROCESS 7

Time Process0 Process1 Notes
1 Running Ready
2 Running Ready
3 Running Ready Process0 initiates I/O
4 Blocked Running Process0 is blocked,
5 Blocked Running so Process1 runs
6 Blocked Running
7 Ready Running I/O done
8 Ready Running Process1 now done
9 Running –
10 Running – Process0 now done

Figure 4.4: Tracing Process State: CPU and I/O

ing from a disk or waiting for a packet from a network. The OS recog-
nizes Process0 is not using the CPU and starts running Process1. While
Process1 is running, the I/O completes, moving Process0 back to ready.
Finally, Process1 finishes, and Process0 runs and then is done.

Note that there are many decisions the OS must make, even in this
simple example. First, the system had to decide to run Process1 while
Process0 issued an I/O; doing so improves resource utilization by keep-
ing the CPU busy. Second, the system decided not to switch back to
Process0 when its I/O completed; it is not clear if this is a good deci-
sion or not. What do you think? These types of decisions are made by the
OS scheduler, a topic we will discuss a few chapters in the future.

4.5 Data Structures

The OS is a program, and like any program, it has some key data struc-
tures that track various relevant pieces of information. To track the state
of each process, for example, the OS likely will keep some kind of process
list for all processes that are ready, as well as some additional informa-
tion to track which process is currently running. The OS must also track,
in some way, blocked processes; when an I/O event completes, the OS
should make sure to wake the correct process and ready it to run again.

Figure 4.5 shows what type of information an OS needs to track about
each process in the xv6 kernel [CK+08]. Similar process structures exist
in “real” operating systems such as Linux, Mac OS X, or Windows; look
them up and see how much more complex they are.

From the figure, you can see a couple of important pieces of informa-
tion the OS tracks about a process. The register context will hold, for a
stopped process, the contents of its registers. When a process is stopped,
its registers will be saved to this memory location; by restoring these reg-
isters (i.e., placing their values back into the actual physical registers), the
OS can resume running the process. We’ll learn more about this technique
known as a context switch in future chapters.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Example 2: Multiple processes sharing CPU

Examining Processes in Unix/Linux

• ps command
• Standard process attributes

• /proc directory
• More interesting information if you are the root.

• top command
• Examining CPU and memory usage statistics.

Orphans and Zombies

• Orphan
• When a parent dies, child becomes an orphan process.
• The init process (pid = 1) takes over as parent of the orphaned children.
• Here’s an example: https://oscourse.github.io/examples/orphan.c
• Do a ‘ps –l’ after to check parent’s PID of the orphan process.
• After you are done remember to kill the orphan process ‘kill –9 <pid>’

• Zombie
• The child becomes a zombie when it terminates and it’s parent doesn’t call wait().
• Status “Z” seen with ps.
• Zombies cleared when parent eventually calls wait() or waitpid().
• Zombies don’t take up any system resources. Just an integer status is kept in the OS.

https://oscourse.github.io/examples/orphan.c

