Processes

Kartik Gopalan

References:

* Chapter 2 of the Tanenbaum’s book
* Chapter 4 of OSTEP book

* man pages in any UNIX/Linux system

Process versus Program

»+ Program 1s a passive executable file stored in the disk
»+ Contains static code and static data

» Process 1s a program 1n execution.

» There can be multiple processs running the same program
- Example: many users can run *“Is” at the same time

What’s 1n a process?

- Memory

« CPU state

+ Code MAX

» Static and dynamic data
- Procedure call stack

 Program counter
» Stack pointer

» General purpose registers, etc

0

+ 1O state Typical memory layout of a process
» Open files, devices, network

Process Hierarchy Tree

o Parent of B and C
Child of A

parent of D, E, F(B (c) Leaf

» A created two child processes, B and C

» B created three child processes, D, E, and F

System calls to control a process

» fork() - Create a process

» exec() - Run a new program

* More accurately: Replace the current process with a
new program image

» wait() or waitpid() - wait for a child process to terminate

o exit() - Terminate the calling process

Example : fork() and waitpid()

https://oscourse.github.10/examples/fork ex.c
pid = fork();

fork()

if (pid < 0) { Parent =——» Child

perror ("fork failed:”);

exit(1l);

}

if (pid == 0) { // Child executes this block -fork() 1s called once, but it returns twice!!
printf (“"This is the child\n"); : :
exit (0) : - 1n the parent and the child

}

- - - + Child 1s an t“ ” of parent

if (pid > 0) { //Parent executes this block S all €xacl Copy Olf parcnt.

printf (“"This is parent. The child is %d\n", pid);

Return value of fork in child =0
ret = waitpid(pid, &status, 0);

if (ret < 0) { - Return value of fork 1n parent =
perror (“waitpid failed:”) [process ID of Chlld]
exit(2) ;

}

. . . . fork’s return value lets the parent and
printf (“"Child exited with status %d\n”, status); . .
exit (0) ; child take different code paths.

https://oscourse.github.io/examples/fork_ex.c

exec() - Example code

https://oscourse.github.io/examples/exec ex.c

fork()
if ((pid = fork()) < 0) {

fprintf (stderr, "fork failed\n");
exit(l) ;
}

if (pid == 0) ({ , .
L£(execlp("echo”, "echo", "Hello from ° €X€C() replaces the caller’s memory with a

the child", (char *) NULL) == -1) new program image.
fprintf (stderr, "execl failed\n");

» e¢xec() 1s called once but doesn’t return!!
exit(2) ;

} » All I/O descriptors that were open before

exec() stay open after exec().

printf ("parent carries on\n");

* [/O descriptors = file, socket, pipe etc.

» This property 1s very usetul for
implementing filters.

https://oscourse.github.io/examples/exec_ex.c

Different Types of exec()

-int execl (char * pathname, char * arg0, .. , (char *)0);
- Full pathname + long listing of arguments

-int execv(char * pathname, char * argv]|]) .
- Full pathname + arguments 1n an array

-int execle(char * pathname, char * arg0, .. , (char *)0, char

envpl[]);
- Full pathname + long listing of arguments + environment variables

-int execve (char * pathname, char * argv[], char envp[])
- Full pathname + arguments in an array + environment wvariables

-int execlp(char * filename, char * arg0O, .. , (char *)0);
- Short pathname + long listing of arguments

-int execvp(char * filename, char * argv]|]) .
- Short pathname + arguments in an array

‘More 1nfo: check “man 3 exec”

wait() and exit()

 wait() and waitpid()
 Called by parent to wait for child to terminate

* Terminating a process
 Either return from main()
* Or call exit(status) anywhere 1n the code
 Status 1s retrieved by the parent using wait().
* () for normal status, non-zero for error

Scheduling processes on the CPU

* Time-sharing (temporal multiplexing)
* Many processes share one or more CPUs

Who's

Next? CPU

Queue of Ready Process
CPU Scheduler

* Scheduling algorithms depend on performance objectives
* Round-robin, FIFO, Shortest Job First, Fair scheduling etc
e Linux implements CFS
» So-called “completely” fair scheduling

Process Lifecycle

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

 Ready

* Process 1s ready to execute, but not yet executing

» Its waiting in the scheduling queue for the CPU scheduler to pick it up.
 Running

* Process 1s executing on the CPU
* Blocked

* Process 1s waiting (sleeping) for some event to occur.

* Once the event occurs, process will be woken up, and placed on the scheduling queue.

Example 1: Multiple processes sharing CPU

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Blocked

Time Processy Process; Notes

1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready Processp now done
5 — Running

6 — Running

/ — Running

8 — Running Process; now done

Figure 4.3: Tracing Process State: CPU Only

Example 2: Multiple processes sharing CPU

Blocked

1. Process blocks for input

2. Scheduler picks another process
3. Scheduler picks this process

4. Input becomes available

Time Processg Process Notes
1 Running Ready
2 Running Ready
3 Running Ready Processg initiates I/0
4 Blocked Running Processg is blocked,
5 Blocked Running so Processi runs
6 Blocked Running
7 Ready Running I/0 done
8 Ready Running Process;1 now done
9 Running —
10 Running — Processp now done

Figure 4.4: Tracing Process State: CPU and I/O

Examining Processes in Unix/Linux

* ps command
» Standard process attributes

» /proc directory
* More 1nteresting information 1f you are the root.

* top command
* Examining CPU and memory usage statistics.

Orphans and Zombies

* Orphan

* When a parent dies, child becomes an orphan process.

* The it process (pi1d = 1) takes over as parent of the orphaned children.
* Here’s an example: https://oscourse.github.1o/examples/orphan.c

* Do a ‘ps I’ after to check parent’s PID of the orphan process.

» After you are done remember to kill the orphan process ‘kill -9 <pid>’

e /Zombie

* The child becomes a zombie when 1t terminates and 1t’s parent doesn’t call wait().

» Status “Z” seen with ps.

« Zombies cleared when parent eventually calls wait() or waitpid().

« Zombies don’t take up any system resources. Just an integer status 1s kept 1n the OS.

https://oscourse.github.io/examples/orphan.c

