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TLBs – Translation Lookaside Buffers

• TLB is a small cache that speeds up the translation of virtual addresses to 
physical addresses.


• TLB is part of the MMU hardware (comes with CPU)

• It is not a Data Cache or Instruction Cache. Those are separate.

• TLB simply caches translations from virtual page number to physical page 

number so that the MMU don’t have to access page-table in memory too often.

• On older x86 processors, TLB had to be “flushed” upon every context switch 

because there is no field in TLB to identify the process context.

• Tagged TLB can reduce this overhead
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Cold Start Penalty
• Cost of repopulating the TLB (and other caches) upon a 

context  switch.


• Immediately after a context switch, all (or many) of TLB 
entries are invalidated.


• On some x86 processors, TLB has to be “flushed” upon every 
context switch because there is no field in TLB to identify the 
process context.


• Every memory access by the newly scheduled process may 
results in a TLB miss.


• MMU must then walk the page-table in main memory to 
repopulate the missing TLB entry, which takes longer than a 
cache hit.
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TLB Coverage
• Max amount of memory mapped by TLB

▪ Max mount of memory that can be accessed without TLB misses


• TLB Coverage = N x P bytes

▪ N = Number of entries in TLB

▪ P = Page size in bytes

▪ N is fixed by hardware constraints

▪ So, to increase TLB Coverage, we must increase P.


• Consider these extreme examples

▪ Suppose P = 1 byte


• TLB Coverage = N bytes only

▪ Suppose P = 2^64 bytes (on a 64-bit ISA)


• TLB Coverage = N x2^64bytes

• TLB can perform translations for N processes without any TLB misses!


• Of course, both examples above are impractical and meant to illustrate the tradeoffs.


• But what if P is something reasonable, but greater than than the standard 4KB?


• This brings us next to superpages.
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Tagged TLB
• A“tag” in each TLB entry identifies the process/

thread context to which the TLB entry belongs


• Thus TLB entries for more than one execution 
context can be stored simultaneously in the TLB.

• TLB lookup hardware matches the tag in 

addition to the virtual page number.


• With tags, context switch no longer requires a 
complete TLB flush.

• Reduces cold-start penalty.



Two types of memory translation architectures

❑ Architected Page Tables

• Page table interface defined by ISA and understood by memory translation 

hardware

• E.g. x86 architecture

• MMU handles TLB miss (in hardware)

• OS handles page faults (in software)

• ISA specifies page table format


❑ Architected TLBs

• TLB interface defined by ISA and understood by MMU

• E.g. alpha architecture

• TLB miss handled by OS (in software)

• ISA does not specify page table format



Superpages/Hugepages/
Largepages
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Ref: 

• “Practical, transparent operating system support for superpages”, 

Juan Navarro, Sitaram Iyer, Peter Druschel, Alan Cox, OSDI 2002

• https://dl.acm.org/citation.cfm?id=844138

https://dl.acm.org/citation.cfm?id=844138
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Overview

◆Increasing cost in TLB miss overhead

▪ growing working sets

▪ TLB size does not grow at same pace


◆Processors now provide superpages

▪ one TLB entry can map a large region


◆OSs have been slow to harness them

▪ no transparent superpage support for apps


◆This talk: a practical and transparent solution to 
support superpages
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How to increase TLB coverage

◆Typical TLB coverage ≈ 1 MB


◆Use superpages!

▪ large and small pages

▪ Increase TLB coverage

▪ no increase in TLB size



Superpages
• Memory pages of larger sizes than standard pages


• supported by most modern CPUs


• Superpage size = power of 2 x the base page size


• Only one TLB entry per superpage

• But multiple (identical) page-table entries, one per base 

page


• Constraints:

• contiguous (physically and virtually)

• aligned (physically and virtually)

• uniform protection attributes

• one reference bit, one dirty bit
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A superpage TLB

base page entry (size=1)

superpage entry (size=4)

physical memory

virtual memory

virtual

address

TLB

physical

address
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Examples of restrictions on superpage
• Size restrictions


• Possible

• 8KiB = 21 x 4KiB

• 16KiB = 22 x 4KiB

• 32KiB = 23 x 4KiB etc


• Contiguity restrictions for superpage of size 4 

• Possible: 


• Base pages 8,9,10,11 in one superpage

• Not possible: 


• Base pages 8, 10, 20, 22 in one superpage

• Alignment restrictions for superpage of size 4


• Possible: 

• Base pages 4,5,6,7 in one superpage

• Base pages 8,9,10,11 in one superpage

• Base pages 12,13,14,15 in one superpage


• Not possible: 

• Base pages 6,7,8,9 in one superpage

• Base pages 13,14,15,16 in one superpage
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A superpage TLB

base page entry (size=1)

superpage entry (size=4)

physical memory

virtual memory

virtual

address

TLB

physical

address

Alpha:  
8,64,512KB; 4MB 

Itanium:

4,8,16,64,256KB; 

1,4,16,64,256MB



II  
The superpage problem
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Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

◆How / when / what size to allocate?
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Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D

◆How / when / what size to allocate?
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Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D A B C D

◆How / when / what size to allocate?
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Issue 2: promotion

◆Promotion: create a superpage out of a 
set of smaller pages

▪ mark page table entry of each base page


◆When to promote?
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Issue 2: promotion

◆Promotion: create a superpage out of a 
set of smaller pages

▪ mark page table entry of each base page


◆When to promote?

Wait for app to touch pages? 
May lose opportunity to increase 

TLB coverage.
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Issue 2: promotion

◆Promotion: create a superpage out of a 
set of smaller pages

▪ mark page table entry of each base page


◆When to promote?

Create small superpage?

May incur overhead.
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Issue 2: promotion

◆Promotion: create a superpage out of a 
set of smaller pages

▪ mark page table entry of each base page


◆When to promote?

Forcibly populate pages?

May incur I/O cost or increase 

internal fragmentation.
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Issue 3: demotion

◆when page attributes of base pages of a 
superpage become non-uniform


◆during partial pageouts

Demotion: convert a superpage into 
smaller pages
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Issue 4: fragmentation
• Memory becomes externally fragmented due to 


• use of multiple page sizes

• Scattered wired pages 


• Wired pages = pages that can’t be paged out to swap device

• break contiguity of free base pages since they cannot be relocated.


• External fragmentation occurs at superpage sizes. 

• No external fragmentation at base page granularity


• Contiguity of free pages is a contended resource

• Contiguous pages = pages that are next to each other 

• Allocating  a superpage requires that sufficient number of contiguous 

base pages must be free.


• OS must

• use contiguity restoration techniques

• trade off impact of contiguity restoration against superpage benefits
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Previous approaches
◆Reservations


▪ one superpage size only


◆Relocation

▪ move pages at promotion time

▪ must recover copying costs


◆Eager superpage creation (IRIX, HP-UX)

▪ size specified by user: non-transparent


◆Hardware support

▪ Contiguous virtual superpage mapped to discontiguous physical 

base pages


◆Demotion issues not addressed

▪ large pages partially dirty/referenced



III 
Design
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Key observation

Once an application touches the first page 
of a memory object then it is likely that it will 

quickly touch every page of that object

◆Example: array initialization

◆Opportunistic policies

▪ superpages as large and as soon as possible

▪ as long as no penalty if wrong decision
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Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved 

frames
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Superpage allocation
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Superpage allocation
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Allocation: reservation size

Opportunistic policy

◆Go for biggest size that is no larger than 

the memory object (e.g., file)

◆If required size not available, try 

preemption before resigning to a smaller 
size

▪ preempted reservation had its chance
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Allocation: managing reservations

largest unused (and aligned) chunk

best candidate for preemption at front:

◆reservation whose most recently populated 

frame was populated the least recently


1

2

4



32

Incremental promotions

Promotion policy: opportunistic

2

4

4+2

8
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Speculative demotions

◆One reference bit per superpage

▪ How do we detect portions of a superpage not referenced 

anymore?


◆On memory pressure, demote superpages when 
resetting ref bit


◆Re-promote (incrementally) as pages are referenced


◆Demote also when the page daemon selects a base 
page as a victim page.
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Demotions: dirty superpages

◆One dirty bit per superpage

▪ what’s dirty and what’s not?

▪ page out entire superpage


◆Demote on first write to clean superpage

write

◆Re-promote (incrementally) as other 
pages are dirtied
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Fragmentation control
• Low contiguity: modified page daemon for victim 

selection

• restore contiguity


• move clean, inactive pages to the free list

• minimize impact 


• prefer victim pages that contribute the most to 
contiguity


• Cluster wired pages

• Assign a dedicated region of physical memory for 

wired pages

• So that they break contiguity for superpage allocations 

from rest of the memory.



IV 
Experimental  

evaluation
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Experimental setup

• FreeBSD 4.3

• Alpha 21264, 500 MHz, 512 MB RAM

• 8 KB, 64 KB, 512 KB, 4 MB pages

• 128-entry DTLB, 128-entry ITLB

• Unmodified applications
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Best-case benefits

• TLB miss reduction usually above 95%

• SPEC CPU2000 integer


• 11.2% improvement (0 to 38%)

• SPEC CPU2000 floating point


• 11.0% improvement (-1.5% to 83%)

• Other benchmarks


• FFT (2003 matrix): 55%

• 1000x1000 matrix transpose: 655%


• 30%+ in 8 out of 35 benchmarks
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Why multiple superpage sizes

Improvements with only one superpage 
size vs. all sizes 

64KB 512KB 4MB All

FFT 1% 0% 55% 55%

galgel 28% 28% 1% 29%

mcf 24% 31% 22% 68%
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Conclusions

• Superpages

• OS can provide transparent support for a 

mix of superpages by applications.

• Contiguity restoration is necessary


• sustains benefits; low impact

• Multiple page sizes are important


• scales to very large superpages
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More references:

• Multiple page sizes in different processors

• https://en.wikipedia.org/wiki/

Page_(computer_memory)#Multiple_page_sizes


• Linux Transparent Hugepages

• https://lwn.net/Articles/423584/

https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://lwn.net/Articles/423584/

