
TLB & TLB Coverage

Kartik Gopalan

2

TLBs – Translation Lookaside Buffers

• TLB is a small cache that speeds up the translation of virtual addresses to
physical addresses.

• TLB is part of the MMU hardware (comes with CPU)

• It is not a Data Cache or Instruction Cache. Those are separate.

• TLB simply caches translations from virtual page number to physical page

number so that the MMU don’t have to access page-table in memory too often.

• On older x86 processors, TLB had to be “flushed” upon every context switch

because there is no field in TLB to identify the process context.

• Tagged TLB can reduce this overhead

3

Cold Start Penalty
• Cost of repopulating the TLB (and other caches) upon a

context switch.

• Immediately after a context switch, all (or many) of TLB
entries are invalidated.

• On some x86 processors, TLB has to be “flushed” upon every
context switch because there is no field in TLB to identify the
process context.

• Every memory access by the newly scheduled process may
results in a TLB miss.

• MMU must then walk the page-table in main memory to
repopulate the missing TLB entry, which takes longer than a
cache hit.

4

TLB Coverage
• Max amount of memory mapped by TLB

▪ Max mount of memory that can be accessed without TLB misses

• TLB Coverage = N x P bytes

▪ N = Number of entries in TLB

▪ P = Page size in bytes

▪ N is fixed by hardware constraints

▪ So, to increase TLB Coverage, we must increase P.

• Consider these extreme examples

▪ Suppose P = 1 byte

• TLB Coverage = N bytes only

▪ Suppose P = 2^64 bytes (on a 64-bit ISA)

• TLB Coverage = N x2^64bytes

• TLB can perform translations for N processes without any TLB misses!

• Of course, both examples above are impractical and meant to illustrate the tradeoffs.

• But what if P is something reasonable, but greater than than the standard 4KB?

• This brings us next to superpages.

5

Tagged TLB
• A“tag” in each TLB entry identifies the process/

thread context to which the TLB entry belongs

• Thus TLB entries for more than one execution
context can be stored simultaneously in the TLB.

• TLB lookup hardware matches the tag in

addition to the virtual page number.

• With tags, context switch no longer requires a
complete TLB flush.

• Reduces cold-start penalty.

Two types of memory translation architectures

❑ Architected Page Tables

• Page table interface defined by ISA and understood by memory translation

hardware

• E.g. x86 architecture

• MMU handles TLB miss (in hardware)

• OS handles page faults (in software)

• ISA specifies page table format

❑ Architected TLBs

• TLB interface defined by ISA and understood by MMU

• E.g. alpha architecture

• TLB miss handled by OS (in software)

• ISA does not specify page table format

Superpages/Hugepages/
Largepages

Kartik Gopalan

Ref:

• “Practical, transparent operating system support for superpages”,

Juan Navarro, Sitaram Iyer, Peter Druschel, Alan Cox, OSDI 2002

• https://dl.acm.org/citation.cfm?id=844138

https://dl.acm.org/citation.cfm?id=844138

8

Overview

◆Increasing cost in TLB miss overhead

▪ growing working sets

▪ TLB size does not grow at same pace

◆Processors now provide superpages

▪ one TLB entry can map a large region

◆OSs have been slow to harness them

▪ no transparent superpage support for apps

◆This talk: a practical and transparent solution to
support superpages

9

How to increase TLB coverage

◆Typical TLB coverage ≈ 1 MB

◆Use superpages!

▪ large and small pages

▪ Increase TLB coverage

▪ no increase in TLB size

Superpages
• Memory pages of larger sizes than standard pages

• supported by most modern CPUs

• Superpage size = power of 2 x the base page size

• Only one TLB entry per superpage

• But multiple (identical) page-table entries, one per base

page

• Constraints:

• contiguous (physically and virtually)

• aligned (physically and virtually)

• uniform protection attributes

• one reference bit, one dirty bit

11

A superpage TLB

base page entry (size=1)

superpage entry (size=4)

physical memory

virtual memory

virtual

address

TLB

physical

address

12

Examples of restrictions on superpage
• Size restrictions

• Possible

• 8KiB = 21 x 4KiB

• 16KiB = 22 x 4KiB

• 32KiB = 23 x 4KiB etc

• Contiguity restrictions for superpage of size 4

• Possible:

• Base pages 8,9,10,11 in one superpage

• Not possible:

• Base pages 8, 10, 20, 22 in one superpage

• Alignment restrictions for superpage of size 4

• Possible:

• Base pages 4,5,6,7 in one superpage

• Base pages 8,9,10,11 in one superpage

• Base pages 12,13,14,15 in one superpage

• Not possible:

• Base pages 6,7,8,9 in one superpage

• Base pages 13,14,15,16 in one superpage

13

A superpage TLB

base page entry (size=1)

superpage entry (size=4)

physical memory

virtual memory

virtual

address

TLB

physical

address

Alpha:  
8,64,512KB; 4MB 

Itanium:

4,8,16,64,256KB;

1,4,16,64,256MB

II  
The superpage problem

15

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

◆How / when / what size to allocate?

16

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D

◆How / when / what size to allocate?

17

Issue 1: superpage allocation

virtual memory

physical memory

superpage boundaries

B

B

A

A

C

C

D

D A B C D

◆How / when / what size to allocate?

18

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages

▪ mark page table entry of each base page

◆When to promote?

19

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages

▪ mark page table entry of each base page

◆When to promote?

Wait for app to touch pages?
May lose opportunity to increase

TLB coverage.

20

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages

▪ mark page table entry of each base page

◆When to promote?

Create small superpage?

May incur overhead.

21

Issue 2: promotion

◆Promotion: create a superpage out of a
set of smaller pages

▪ mark page table entry of each base page

◆When to promote?

Forcibly populate pages?

May incur I/O cost or increase

internal fragmentation.

22

Issue 3: demotion

◆when page attributes of base pages of a
superpage become non-uniform

◆during partial pageouts

Demotion: convert a superpage into
smaller pages

23

Issue 4: fragmentation
• Memory becomes externally fragmented due to

• use of multiple page sizes

• Scattered wired pages

• Wired pages = pages that can’t be paged out to swap device

• break contiguity of free base pages since they cannot be relocated.

• External fragmentation occurs at superpage sizes.

• No external fragmentation at base page granularity

• Contiguity of free pages is a contended resource

• Contiguous pages = pages that are next to each other

• Allocating a superpage requires that sufficient number of contiguous

base pages must be free.

• OS must

• use contiguity restoration techniques

• trade off impact of contiguity restoration against superpage benefits

24

Previous approaches
◆Reservations

▪ one superpage size only

◆Relocation

▪ move pages at promotion time

▪ must recover copying costs

◆Eager superpage creation (IRIX, HP-UX)

▪ size specified by user: non-transparent

◆Hardware support

▪ Contiguous virtual superpage mapped to discontiguous physical

base pages

◆Demotion issues not addressed

▪ large pages partially dirty/referenced

III 
Design

26

Key observation

Once an application touches the first page
of a memory object then it is likely that it will

quickly touch every page of that object

◆Example: array initialization

◆Opportunistic policies

▪ superpages as large and as soon as possible

▪ as long as no penalty if wrong decision

27

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

28

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

D

D

A

A

C

C

29

Superpage allocation

virtual memory

physical memory

superpage boundaries

B

Preemptible reservations

B

reserved

frames

D

D

A

A

C

C

30

Allocation: reservation size

Opportunistic policy

◆Go for biggest size that is no larger than

the memory object (e.g., file)

◆If required size not available, try

preemption before resigning to a smaller
size

▪ preempted reservation had its chance

31

Allocation: managing reservations

largest unused (and aligned) chunk

best candidate for preemption at front:

◆reservation whose most recently populated

frame was populated the least recently

1

2

4

32

Incremental promotions

Promotion policy: opportunistic

2

4

4+2

8

33

Speculative demotions

◆One reference bit per superpage

▪ How do we detect portions of a superpage not referenced

anymore?

◆On memory pressure, demote superpages when
resetting ref bit

◆Re-promote (incrementally) as pages are referenced

◆Demote also when the page daemon selects a base
page as a victim page.

34

Demotions: dirty superpages

◆One dirty bit per superpage

▪ what’s dirty and what’s not?

▪ page out entire superpage

◆Demote on first write to clean superpage

write

◆Re-promote (incrementally) as other
pages are dirtied

35

Fragmentation control
• Low contiguity: modified page daemon for victim

selection

• restore contiguity

• move clean, inactive pages to the free list

• minimize impact

• prefer victim pages that contribute the most to
contiguity

• Cluster wired pages

• Assign a dedicated region of physical memory for

wired pages

• So that they break contiguity for superpage allocations

from rest of the memory.

IV 
Experimental  

evaluation

37

Experimental setup

• FreeBSD 4.3

• Alpha 21264, 500 MHz, 512 MB RAM

• 8 KB, 64 KB, 512 KB, 4 MB pages

• 128-entry DTLB, 128-entry ITLB

• Unmodified applications

38

Best-case benefits

• TLB miss reduction usually above 95%

• SPEC CPU2000 integer

• 11.2% improvement (0 to 38%)

• SPEC CPU2000 floating point

• 11.0% improvement (-1.5% to 83%)

• Other benchmarks

• FFT (2003 matrix): 55%

• 1000x1000 matrix transpose: 655%

• 30%+ in 8 out of 35 benchmarks

39

Why multiple superpage sizes

Improvements with only one superpage
size vs. all sizes

64KB 512KB 4MB All

FFT 1% 0% 55% 55%

galgel 28% 28% 1% 29%

mcf 24% 31% 22% 68%

40

Conclusions

• Superpages

• OS can provide transparent support for a

mix of superpages by applications.

• Contiguity restoration is necessary

• sustains benefits; low impact

• Multiple page sizes are important

• scales to very large superpages

41

More references:

• Multiple page sizes in different processors

• https://en.wikipedia.org/wiki/

Page_(computer_memory)#Multiple_page_sizes

• Linux Transparent Hugepages

• https://lwn.net/Articles/423584/

https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://lwn.net/Articles/423584/

