TLB & TLB Coverage

Kartik Gopalan

TLBs — Translation Lookaside Bufters

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0) R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW 75

» TLB is a small cache that speeds up the translation of virtual addresses to
physical addresses.

» TLB is part of the MMU hardware (comes with CPU)

* It 1s not a Data Cache or Instruction Cache. Those are separate.

« TLB simply caches translations from virtual page number to physical page
number so that the MMU don’t have to access page-table in memory too often.

* On older x86 processors, TLB had to be “flushed” upon every context switch

because there is no field in TLB to identify the process context.

» Tagged TLB can reduce this overhead

Cold Start Penalty

Cost of repopulating the TLB (and other caches) upon a
context switch.

Immediately after a context switch, all (or many) of TLB
entries are invalidated.

* On some x86 processors, TLB has to be “flushed” upon every
context switch because there is no field in TLB to identify the
process context.

Every memory access by the newly scheduled process may
results 1n a TLB miss.

MMU must then walk the page-table in main memory to
repopulate the missing TLB entry, which takes longer than a
cache hit.

TLB Coverage

« Max amount of memory mapped by TLB
« Max mount of memory that can be accessed without TLB misses

TLB Coverage = N x P bytes
N = Number of entries in TLB
P = Page size in bytes
N is fixed by hardware constraints
So, to increase TLB Coverage, we must increase P.

Consider these extreme examples
= Suppose P =1 byte
« TLB Coverage = N bytes only
» Suppose P = 2264 bytes (on a 64-bit ISA)
« TLB Coverage = N x2"64bytes
« TLB can perform translations for N processes without any TLB misses!

« Of course, both examples above are impractical and meant to illustrate the tradeoffs.
But what if P is something reasonable, but greater than than the standard 4KB?

« This brings us next to superpages.

Tagged TLB

A"tag” in each TLB entry identifies the process/
thread context to which the TLB entry belongs

Thus TLB entries for more than one execution
context can be stored simultaneously in the TLB.

 TLB lookup hardware matches the tag in
addition to the virtual page number.

With tags, context switch no longer requires a
complete TLB flush.

* Reduces cold-start penalty.

Two types of memory translation architectures

d Architected Page Tables

- Page table interface defined by ISA and understood by memory translation
hardware

- E.g. x86 architecture

- MMU handles TLB miss (in hardware)
 OS handles page faults (in software)

- ISA specifies page table format

d Architected TLBs
- TLB interface defined by ISA and understood by MMU
- E.g. alpha architecture
- TLB miss handled by OS (in software)
- ISA does not specify page table format

Superpages/Hugepages/
Largepages

Kartik Gopalan

Ref:

» “Practical, transparent operating system support for superpages”,
Juan Navarro, Sitaram lyer, Peter Druschel, Alan Cox, OSDI 2002

https://dl.acm.org/citation.cfm?id=844138

Overview

Increasing cost in TLB miss overhead
= growing working sets
= TLB size does not grow at same pace

Processors now provide superpages
= one TLB entry can map a large region

OSs have been slow to harness them
= no transparent superpage support for apps

This talk: a practical and transparent solution to
support superpages

How to Increas

¢ Typical TLB coverage =1 MB

¢ Use superpages!
= large and small pages
= Increase TLB coverage
= NO Iincrease in TLB size

Superpages

 Memory pages of larger sizes than standard pages
 supported by most modern CPUs

« Superpage size = power of 2 x the base page size

* Only one TLB entry per superpage
« But multiple (identical) page-table entries, one per base
page

» Constraints:
 contiguous (physically and virtually)
» aligned (physically and virtually)
 uniform protection attributes
 one reference bit, one dirty bit

A superpage TLB

. virtual memory

base page entry (size=1)

virtual superpage entry (size=4) physical
address address

TLB

physical memory .

Examples of restrictions on superpage

e Size restrictions
* Possible
+ 8KiB = 21" x 4KiB
« 16KiB = 22 x 4KiB
« 32KiB = 23 x 4KiB etc
» Contiguity restrictions for superpage of size 4
* Possible:
» Base pages 8,9,10,11 in one superpage
* Not possible:
+ Base pages 8, 10, 20, 22 in one superpage
* Alignment restrictions for superpage of size 4
* Possible:
« Base pages 4,5,6,7 in one superpage
« Base pages 8,9,10,11 in one superpage
» Base pages 12,13,14,15 in one superpage
* Not possible:
« Base pages 6,7,8,9 in one superpage

» Base pages 13,14,15,16 in one superpage
12

A superpage TLB

virtual memorn

virtual
address

Alpha:
8,04,512KB; 4MB

ltanium:
4.8,16,64,256KB:
1,4.16,64,256MB

physical
address

physical memory

1
The superpage problem

Issue 1: superpage allocation

__
=

superpage boundaries

How / when / what size to allocate?

15

Issue 1: superpage allocation

“ E E _ virtual memory
-
{/.

superpage boundaries

OO0 B | = [@ ehlmeno

How / when / what size to allocate?

16

Issue 1: superpage allocation

A%B D _ virtual memory
__
—

superpage boundaries

_ “ E u physical memory

How / when / what size to allocate?

17

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

18

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

Wait for app to touch pages?
May lose opportunity to increase
TLB coverage.

19

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

Create small superpage?
May incur overhead.

20

Issue 2: promotion

Promotion: create a superpage out of a
set of smaller pages

= mark page table entry of each base page
When to promote?

Forcibly populate pages?
May incur I/O cost or increase
internal fragmentation.

21

Issue 3: demotion

Demotion: convert a superpage into
smaller pages

when page attributes of base pages of a
superpage become non-uniform

during partial pageouts

22

Issue 4: fragmentation

Memory becomes externally fragmented due to
 use of multiple page sizes
« Scattered wired pages
» Wired pages = pages that can’t be paged out to swap device

» break contiguity of free base pages since they cannot be relocated.

External fragmentation occurs at superpage sizes.
* No external fragmentation at base page granularity

« Contiguity of free pages is a contended resource
« Contiguous pages = pages that are next to each other

» Allocating a superpage requires that sufficient number of contiguous
base pages must be free.

* OS must
 use contiguity restoration techniques
« trade off impact of contiguity restoration against superpage benefits

23

Previous approaches

Reservations
= One superpage size only

Relocation
= move pages at promotion time
= must recover copying costs

Eager superpage creation (IRIX, HP-UX)

= size specified by user: non-transparent

Hardware support

= Contiguous virtual superpage mapped to discontiguous physical
base pages

Demotion issues not addressed
= large pages partially dirty/referenced

24

1|
Design

Key observation

Once an application touches the first page

of a memory object then it is likely that it will
quickly touch every page of that object

Example: array initialization

Opportunistic policies
= superpages as large and as soon as possible
= as long as no penalty if wrong decision

26

Superpage allocation

Preemptible reservations

a |
__
N

superpage boundaries

| (e

virtual memory

physical memory

k & \ reserved

frames

27

Superpage allocation

Preemptible reservations

A c ol
__
N

superpage boundaries

- =0 cho

virtual memory

physical memory

28

Superpage allocation

Preemptible reservations

Afsfc]o
__
[

superpage boundaries

. vBen

virtual memory

physical memory

29

Allocation: reservation size

Opportunistic policy
Go for biggest size that is no larger than
the memory object (e.g., file)

If required size not available, try
preemption before resigning to a smaller
size

= preempted reservation had its chance

30

Allocation: managing reservations

— largest unused (and aligned) chunk

O-mERm 77 7

o= [HREEEE R 1=

best candidate for preemption at front:

reservation whose most recently populated
frame was populated the least recently

31

Incremental promotions

Promotion policy: opportunistic

32

Speculative demotions

One reference bit per superpage

= How do we detect portions of a superpage not referenced
anymore?

On memory pressure, demote superpages when
resetting ref bit

Re-promote (incrementally) as pages are referenced

Demote also when the page daemon selects a base
page as a victim page.

33

Demotions: dirty superpages

One dirty bit per superpage

= what's dirty and what’s not?

= page out entire superpage

Demote on first write to clean superpage

write
I

IV VN TNV IRl YNNI 7

Re-promote (incrementally) as other
pages are dirtied

34

Fragmentation control

« Low contiguity: modified page daemon for victim
selection

* restore contiguity
* move clean, inactive pages to the free list
* minimize impact
« prefer victim pages that contribute the most to
contiguity

» Cluster wired pages
« Assign a dedicated region of physical memory for
wired pages

« So that they break contiguity for superpage allocations
from rest of the memory.

35

1V
Experimental
evaluation

Experimental setup

* FreeBSD 4.3

* Alpha 21264, 500 MHz, 512 MB RAM
8 KB, 64 KB, 512 KB, 4 MB pages

« 128-entry DTLB, 128-entry ITLB

« Unmodified applications

37

Best-case benefits

* TLB miss reduction usually above 95%

« SPEC CPU2000 integer
* 11.2% improvement (0 to 38%)

« SPEC CPU2000 floating point

* 11.0% improvement (-1.5% to 83%)
 Other benchmarks

* FFT (2003 matrix): 55%

* 1000x1000 matrix transpose: 655%
 30%+ in 8 out of 35 benchmarks

38

Why multiple superpage sizes

64KB 512KB 4MB All

FFT 1% 0% 55% 55%

galgel 28% 28% 1% 29%

mcf 24% 31% 22% 68%

Improvements with only one superpage
size vs. all sizes

39

Conclusions

» Superpages
* OS can provide transparent support for a
mix of superpages by applications.

» Contiguity restoration is necessary
 sustains benefits; low impact

* Multiple page sizes are important
 scales to very large superpages

40

« Multiple page sizes in different processors
» https://en.wikipedia.org/wiki/

Page_(computer _memory)#Multiple page_sizes

« Linux Transparent Hugepages
» https://lwn.net/Articles/423584/

41

https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://en.wikipedia.org/wiki/Page_(computer_memory)#Multiple_page_sizes
https://lwn.net/Articles/423584/

