
Adding a “new” System call to Kernel
You can do it in two ways:
1. Easy and smart approach:

Add the new system call by modifying an existing kernel file
2. Generic approach:

Add the new system call by creating a new file in kernel

In following slides, generic approach is used to add a simple system call

Generic Approach
Step 1:
Create an entry for the system call in the kernel’s syscall_table

- This file is located at ~/linux-4.2.5/source/arch/x86/entry/syscall/syscall_64.tbl
- Add a new entry for this new system call under “64-bit system call numbers and

entry vectors” section. The number assigned for this system call must be unique.
In syscall_64.tbl for linux-4.2.5 version, you will notice 0 to 322 numbers have
already been used by other system calls, so add an entry with a new number.
e.g.
323 common myfoo sys_myfoo

Adding a new entry in syscall_64.tbl
Adding a new entry at the end of the list of system calls under “64-bit system call numbers
and entry vectors” heading e.g.
323 common myfoo sys_myfoo

Generic Approach
Step 2.a:
Write the system call code as a kernel function i.e. implementation of this new system call

- To do that (In generic approach), create a hello.c with following content and place
this hello.c file in ~/linux-4.2.5/kernel/ folder:
#include <linux/linkage.h>

#include <linux/export.h>

#include <linux/time.h>

#include <asm/uaccess.h>

#include <linux/printk.h>

#include <linux/slab.h>

asmlinkage int sys_myfoo(void){

 printk(KERN_ALERT "Hello World!\n");

 return 0;

}

EXPORT_SYMBOL(sys_myfoo);

Generic Approach
Step 2.b:
Update the “Makefile” in ~/linux-4.2.5/kernel/ folder so “hello.c” gets compiled when you give
command to compile the whole kernel.

- To update this Makefile: just add “hello.o” at the end of the list of object file names.

Adding a “new” System call to Kernel
Step 3.a:

- Compile your kernel i.e. follow the instructions given in this link:
http://www.cs.binghamton.edu/~kartik/cs350/lab_slides/kernel_compilation.html
If you have already successfully compiled it before adding this new system call, then follow the
instructions from step 7, else follow the instructions from step 1.

- After successful compilation, you will see “hello.o” object file is created in ~/linux-4.2.5/kernel/
folder.

- After compiling and rebooting your machine with your new image successfully, you can use this
new system call in user space (see next slide).

http://www.cs.binghamton.edu/~kartik/cs350/lab_slides/kernel_compilation.html
http://www.cs.binghamton.edu/~kartik/cs350/lab_slides/kernel_compilation.html

Invoke your new handler with syscall
Step 3.b:

- Use the syscall() library function as explained in the system_calls.pdf slides
#include<stdio.h>
#include<unistd.h>
#include<linux/unistd.h>
#include<linux/time.h>
int main(){

int y = 2;
y = syscall(323);

 printf("syscall return value :%d\n",y);//negative value of y will indicate a failure
return 0;

}
- Successful call will print “Hello World!” in /var/log/kern.log file
- Run “dmesg” command to check the content of the file

