Threads

Operating Systems
Kartik Gopalan
Chapter 2 Modern Operating Systems, Andrew Tanenbaum

Chapters 26 and 27, OSTEP book

Chapter 11 Advanced Programming in Unix Environment, By
Richard Stevens

If you want to do one task

* Start one process

Pl

[t you want to do two task “concurrently”

e Start two processes

* Maybe P1 forks P2

 and P3...PN etc if
more than two tasks

e Problem: Pl P2

 fork 1s expensive
* cold-start penalty

If P1 and P2 want to talk to each other?

e E.g. access the same data or
synchronize?

« Two different address spaces

 Need to use IPC

» shared memory, pipes, sockets,
signals

e Problem
 kernel transitions are expensive P1 IPC P2

* May need to copy data
* user—->kernel—>user

 Inter-process Shared memory is
a pain to set up.

Option 1:Event-driven programming

Make one process do all the tasks P
Busy loop polls for events and
executes tasks for each event
while(1)

No IPC needed {

Check pending events;
Length of the busy loop determines if (event 1) do task 1;
response latency if (event 2) do task 2;
Stateful event responses complicate if (event N) do task N;
the code !
 What if 1th occurrence of event 1

effects the jth event processing ?

Option 2: Use threads

* Multiple threads of execution
per process

P1
(Shared address space)

» Each thread has its own
* Program counter
 Stack, stack pointer
* Registers

e All threads share

 one virtual address space

. heap and static data
code, heap and static d T T3 T4

Other Shared and non-shared components

* Shared components
* Open descriptors (files, sockets etc)
* Signals and Signal handlers

e Not shared
e Thread ID
 Errno
* Priority

Address space layout

0KB OKB
the code segment:
Program Code where instrucﬁons live Program Code
1KB 1KB
the heap segment:
Heap contains malloc'd data Heap
KB dynamic data structures KB

(it grows downward)

(free)
(free)
Stack (2)
(it grows upward) (free)
the stack segment:
15KB contains local variables 15KB
ts t i ,
Stack etum values, eto, Stack (1)
16KB 16KB

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

Example: A word processor with three threads

Four score and seven || nation, or any nation || lives that this nation|| who struggled here| |here to the unfinished | [they gave the last full
years ago, our fathers [|so conceived and so|| might live. 1t is|| have consecrated it, far| | work which they who | [measure of devotion,
brought forth upon this || dedicated, can long || altogether fitting and || above our poor power| |fought here have thus | [that we here highly
continent a new nation: || endure. We are met on || proper that we should || to add or detract. The| | far so nobly advanced. | |resolve that these dead

conceived in liberty, [[a great battlefield of || do this world will little note,| |1t is mther for us to be | [shall not have died in
and dedicated to the || that war. But, ina largersense, | | nor long remember, | | here dedicated to the | [vain that this nation,
proposition that all We have come to (| wecannot dedicate, we| [what we say here, but| | great task remaining | [under God, shall have
men are created equal. || dedicate a portion of || cannot consecrate we||it can never forget||before us, that from ||a new birth of freedom

Now we are engaged || that field as a final || cannot hallow this || whatthey did here. these honored dead we | |and that government of

in a great civil war ||resting place for those || gmund. The bmve[| Ltis for us the living, | | take increased devotion [|the peaple by the
testing whether that || who here gave their || men, living and dead, || mther, to be dedicated | | to that cawse for which | |people, for the people

| J
~N"

L

-}
T
—
T
—
I
—

Kernel
Keyboard Disk

 First thread handles keyboard input
« Second thread handles screen display
e Third thread handles saving the document to disk

Example: a multi-threaded web server

Web server process

Dispatcher thread

Y

s

gt

Worker thread

Web page cache

Kernel

Network
connection

User
> space

Kernel
space

* A dispatcher thread waits for and accepts network connections

» Several worker threads

« Each worker processes one network connection concurrently

Advantages of threads

Lower inter-thread context switching overhead than processes

No Inter-process communication
e Zero data transfer cost between threads
* Only need inter-thread synchronization

Threads can be pre-empted at any point
e Long-running threads are OK
» As opposed to event-driven tasks that must be short.

Threads can exploit parallelism
« But it depends...more later

Threads could block without blocking other threads
* But it depends...more later

Disadvantages of Threads

Shared State!
* (Global variables are shared between threads.

* Accidental data changes can cause errors.

Threads and signals don’t mix well
« Common signal handler for all threads in a process
* Which thread to signal? Everybody!

* Royal pain to program correctly.

Lack of robustness

* Crash in one thread will crash the entire process.

Some library functions may not be thread-safe
« Library Functions that return pointers to static internal memory. E.g. gethostbyname()

* Less of a problem these days.

Two types of threads: user-level and kernel-level

Process Thread

_/
\

21388)(8483

= =
Kernel
space Kernel
X
/ \
Run-time Thread Process
system table table

User-level threads

» User-level libraries provide multiple
threads,

» OS kernel does not recognize user-level
threads

» Threads execute when the process is
scheduled

Process Thread
Kernel E
—
Process Thread
table table

Kernel-level threads
* OS kernel provides multiple threads

per process

 Each thread 1s scheduled
independently by the kernel’s CPU

scheduler

Hybrid Implementations

Multiple user threads
on a kernel thread

\ !

-
> User
R o
J
Kernel
Kernel <— Kernel thread space

Multiplexing user-level threads within each kernel- level threads

Local Thread Scheduling

Next thread is picked from among the threads

belonging to the current process
Each process gets a timeslice from kernel.

Then the timeslice is divided up among the
threads within the current process

Local scheduling can be implemented with
either

» Kernel-level threads OR

e User-level threads.

Scheduling decision requires only local
knowledge of threads within the current
process.

threads run \

2. Runtime 12 8
system
picks a —

Order in which l

Process A Process B

thread = =] B
“4\/ S ot

L1. Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

« For example, say process

timeslice may be 50ms, and each
thread within the process runs for

5 msec/CPU burst

Global Thread scheduling

Process A Process B

« Next thread to be scheduled 1s picked
up from ANY process in the system.

« Not just the current process ‘
« Timeslice 1s allocated at the

granularity of threads

1 Kernel picks a thread E

* No notion of per-process timeslice
Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

e Global scheduling can be

implemented only with kernel-level For example each thread
threads runs for 10msec per CPU
burst

* Picking the next thread requires
global knowledge of threads in all
processes.

Thread Creation and termination

e (Creation

* int pthread create(pthread t * thread, pthread attr t * attr,
void * (*start routine)(void *), void * arg);

* Two ways to perform thread termination
1. Return from 1nitial function.
2. void pthread exit(void * status)

e Waiting for child thread in parent
* pthread join(...)
 equivalent to waitpid

Threaded program - example

// shared counter to be incremented by each thread
int counter = 0;

main ()

{
pthread t tid[N];

for (i=0;i<N;i++) {

/*Create a thread in thread func routine*/

Pthread create(&tid[i], NULL, thread func, NULL);
}

for (i=0;i<N;i++)
/* wait for child thread */
Pthread join(tid[i], NULL);

void *thread func(void *argq)

{

/* unprotected code - race condition*/
counter = counter + 1;

return NULL; // thread dies upon return

pthread synchronization operations

* Mutex operation
— pthread _mutex init(...)
— pthread _mutex lock(...)
— pthread mutex unlock (...)
— pthread mutex trylock(...)

* Condition variables
— pthread cond wait (...)
— pthread cond signal (...)
— pthread cond broadcast (...)
— pthread cond timedwait (...)

