
Threads

Operating Systems
Kartik Gopalan

Chapter 2 Modern Operating Systems, Andrew Tanenbaum

Chapters 26 and 27, OSTEP book

Chapter 11 Advanced Programming in Unix Environment, By
Richard Stevens

If you want to do one task
• Start one process

P1

If you want to do two task “concurrently”
• Start two processes

• Maybe P1 forks P2
• and P3…PN etc if

more than two tasks

• Problem:
• fork is expensive
• cold-start penalty

P1 P2

If P1 and P2 want to talk to each other?
• E.g. access the same data or

synchronize?
• Two different address spaces

• Need to use IPC
• shared memory, pipes, sockets,

signals
• Problem

• kernel transitions are expensive
• May need to copy data

• user—->kernel—>user
• Inter-process Shared memory is

a pain to set up.

P1 P2IPC

Option 1:Event-driven programming

P1

while(1)
{

Check pending events;
if (event 1) do task 1;
if (event 2) do task 2;
…
if (event N) do task N;

}

• Make one process do all the tasks

• Busy loop polls for events and
executes tasks for each event

• No IPC needed

• Length of the busy loop determines
response latency

• Stateful event responses complicate
the code
• What if ith occurrence of event 1

effects the jth event processing ?

Option 2: Use threads
• Multiple threads of execution

per process

• Each thread has its own
• Program counter
• Stack, stack pointer
• Registers

• All threads share
• one virtual address space

• code, heap and static data

P1

 T1 T2 T3 T4

Shared address space

Other Shared and non-shared components

• Shared components
• Open descriptors (files, sockets etc)
• Signals and Signal handlers

• Not shared
• Thread ID
• Errno
• Priority

Address space layout
Address space layout

2 CONCURRENCY: AN INTRODUCTION

16KB

15KB

2KB

1KB

0KB

Stack

(free)

Heap

Program Code
the code segment:

where instructions live

the heap segment:
contains malloc’d data

dynamic data structures
(it grows downward)

(it grows upward)
the stack segment:

contains local variables
arguments to routines,

return values, etc.

16KB

15KB

2KB

1KB

0KB

Stack (1)

Stack (2)

(free)

(free)

Heap

Program Code

Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

However, in a multi-threaded process, each thread runs independently
and of course may call into various routines to do whatever work it is do-
ing. Instead of a single stack in the address space, there will be one per
thread. Let’s say we have a multi-threaded process that has two threads
in it; the resulting address space looks different (Figure 26.1, right).

In this figure, you can see two stacks spread throughout the address
space of the process. Thus, any stack-allocated variables, parameters, re-
turn values, and other things that we put on the stack will be placed in
what is sometimes called thread-local storage, i.e., the stack of the rele-
vant thread.

You might also notice how this ruins our beautiful address space lay-
out. Before, the stack and heap could grow independently and trouble
only arose when you ran out of room in the address space. Here, we
no longer have such a nice situation. Fortunately, this is usually OK, as
stacks do not generally have to be very large (the exception being in pro-
grams that make heavy use of recursion).

26.1 Why Use Threads?

Before getting into the details of threads and some of the problems you
might have in writing multi-threaded programs, let’s first answer a more
simple question. Why should you use threads at all?

As it turns out, there are at least two major reasons you should use
threads. The first is simple: parallelism. Imagine you are writing a pro-
gram that performs operations on very large arrays, for example, adding
two large arrays together, or incrementing the value of each element in
the array by some amount. If you are running on just a single proces-
sor, the task is straightforward: just perform each operation and be done.
However, if you are executing the program on a system with multiple

OPERATING

SYSTEMS

[VERSION 0.91] WWW.OSTEP.ORG

Example: A word processor with three threads

• First thread handles keyboard input
• Second thread handles screen display
• Third thread handles saving the document to disk

Example: a multi-threaded web server

• A dispatcher thread waits for and accepts network connections
• Several worker threads

• Each worker processes one network connection concurrently

Advantages of threads
• Lower inter-thread context switching overhead than processes

• No Inter-process communication
• Zero data transfer cost between threads
• Only need inter-thread synchronization

• Threads can be pre-empted at any point
• Long-running threads are OK
• As opposed to event-driven tasks that must be short.

• Threads can exploit parallelism
• But it depends…more later

• Threads could block without blocking other threads
• But it depends…more later

Disadvantages of Threads
• Shared State!

• Global variables are shared between threads.
• Accidental data changes can cause errors.

• Threads and signals don’t mix well
• Common signal handler for all threads in a process
• Which thread to signal? Everybody!
• Royal pain to program correctly.

• Lack of robustness
• Crash in one thread will crash the entire process.

• Some library functions may not be thread-safe
• Library Functions that return pointers to static internal memory. E.g. gethostbyname()
• Less of a problem these days.

Two types of threads: user-level and kernel-level

User-level threads
• User-level libraries provide multiple

threads,
• OS kernel does not recognize user-level

threads
• Threads execute when the process is

scheduled

Kernel-level threads
• OS kernel provides multiple threads

per process

• Each thread is scheduled
independently by the kernel’s CPU
scheduler

Hybrid Implementations

 Multiplexing user-level threads within each kernel- level threads

Local Thread Scheduling
• Next thread is picked from among the threads

belonging to the current process
• Each process gets a timeslice from kernel.
• Then the timeslice is divided up among the

threads within the current process

• Local scheduling can be implemented with
either
• Kernel-level threads OR
• User-level threads.

• Scheduling decision requires only local
knowledge of threads within the current
process. • For example, say process

timeslice may be 50ms, and each
thread within the process runs for
5 msec/CPU burst

Global Thread scheduling
• Next thread to be scheduled is picked

up from ANY process in the system.
• Not just the current process

• Timeslice is allocated at the
granularity of threads
• No notion of per-process timeslice

• Global scheduling can be
implemented only with kernel-level
threads
• Picking the next thread requires

global knowledge of threads in all
processes.

• For example each thread
runs for 10msec per CPU
burst

Thread Creation and termination
• Creation

• int pthread_create(pthread_t * thread, pthread_attr_t * attr,
void * (*start_routine)(void *), void * arg);

• Two ways to perform thread termination
1. Return from initial function.
2. void pthread_exit(void * status)

• Waiting for child thread in parent
• pthread_join(…)
• equivalent to waitpid

Threaded program - example
// shared counter to be incremented by each thread
int counter = 0;

main()
{

pthread_t tid[N];

for (i=0;i<N;i++) {

/*Create a thread in thread_func routine*/
Pthread_create(&tid[i], NULL, thread_func, NULL);

}

for(i=0;i<N;i++)
 /* wait for child thread */
 Pthread_join(tid[i], NULL);

}

void *thread_func(void *arg)
{

 /* unprotected code – race condition*/
 counter = counter + 1;

 return NULL; // thread dies upon return
}

pthread synchronization operations
• Mutex operation

– pthread_mutex_init(…)
– pthread_mutex_lock(…)
– pthread_mutex_unlock (…)
– pthread_mutex_trylock (…)

• Condition variables
– pthread_cond_wait (…)
– pthread_cond_signal (…)
– pthread_cond_broadcast (…)
– pthread_cond_timedwait (…)

