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If you want to do one task
• Start one process

P1



If you want to do two task “concurrently”
• Start two processes 

• Maybe P1 forks P2 
• and P3…PN etc if 

more than two tasks 

• Problem: 
• fork is expensive 
• cold-start penalty

P1 P2



If P1 and P2 want to talk to each other?
• E.g. access the same data or 

synchronize? 
• Two different address spaces  

• Need to use IPC 
• shared memory, pipes, sockets, 

signals 
• Problem 

• kernel transitions are expensive 
• May need to copy data 

• user—->kernel—>user 
• Inter-process Shared memory is 

a pain to set up.

P1 P2IPC



Option 1:Event-driven programming

P1 

while(1) 
{ 

Check pending events; 
if (event 1) do task 1; 
if (event 2) do task 2; 
… 
if (event N) do task N; 

}

• Make one process do all the tasks 

• Busy loop polls for events and 
executes tasks for each event 

• No IPC needed 

• Length of the busy loop determines 
response latency 

• Stateful event responses complicate 
the code 
• What if ith occurrence of event 1 

effects the jth event processing ? 



Option 2: Use threads
• Multiple threads of execution 

per process 

• Each thread has its own 
• Program counter 
• Stack, stack pointer 
• Registers 

• All threads share  
• one virtual address space 

• code, heap and static data

P1 

       T1   T2    T3     T4

Shared address space



Other Shared and non-shared components

• Shared components 
• Open descriptors (files, sockets etc) 
• Signals and Signal handlers 

• Not shared 
• Thread ID 
• Errno 
• Priority



Address space layout
Address space layout

2 CONCURRENCY: AN INTRODUCTION
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Figure 26.1: Single-Threaded And Multi-Threaded Address Spaces

However, in a multi-threaded process, each thread runs independently
and of course may call into various routines to do whatever work it is do-
ing. Instead of a single stack in the address space, there will be one per
thread. Let’s say we have a multi-threaded process that has two threads
in it; the resulting address space looks different (Figure 26.1, right).

In this figure, you can see two stacks spread throughout the address
space of the process. Thus, any stack-allocated variables, parameters, re-
turn values, and other things that we put on the stack will be placed in
what is sometimes called thread-local storage, i.e., the stack of the rele-
vant thread.

You might also notice how this ruins our beautiful address space lay-
out. Before, the stack and heap could grow independently and trouble
only arose when you ran out of room in the address space. Here, we
no longer have such a nice situation. Fortunately, this is usually OK, as
stacks do not generally have to be very large (the exception being in pro-
grams that make heavy use of recursion).

26.1 Why Use Threads?

Before getting into the details of threads and some of the problems you
might have in writing multi-threaded programs, let’s first answer a more
simple question. Why should you use threads at all?

As it turns out, there are at least two major reasons you should use
threads. The first is simple: parallelism. Imagine you are writing a pro-
gram that performs operations on very large arrays, for example, adding
two large arrays together, or incrementing the value of each element in
the array by some amount. If you are running on just a single proces-
sor, the task is straightforward: just perform each operation and be done.
However, if you are executing the program on a system with multiple
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Example: A word processor with three threads

• First thread handles keyboard input 
• Second thread handles screen display 
• Third thread handles saving the document to disk



Example: a multi-threaded web server

• A dispatcher thread waits for and accepts network connections 
• Several worker threads 

• Each worker processes one network connection concurrently



Advantages of threads
• Lower inter-thread context switching overhead than processes 

• No Inter-process communication 
• Zero data transfer cost between threads 
• Only need inter-thread synchronization 

• Threads can be pre-empted at any point 
• Long-running threads are OK  
• As opposed to event-driven tasks that must be short. 

• Threads can exploit parallelism 
• But it depends…more later 

• Threads could block without blocking other threads 
• But it depends…more later



Disadvantages of Threads
• Shared State! 

• Global variables are shared between threads. 
• Accidental data changes can cause errors. 

• Threads and signals don’t mix well 
• Common signal handler for all threads in a process 
• Which thread to signal? Everybody! 
• Royal pain to program correctly. 

• Lack of robustness  
• Crash in one thread will crash the entire process. 

• Some library functions may not be thread-safe 
• Library Functions that return pointers to static internal memory. E.g. gethostbyname() 
• Less of a problem these days.



Two types of threads: user-level and kernel-level

User-level threads 
• User-level libraries provide  multiple 

threads,  
• OS kernel does not recognize user-level 

threads 
• Threads execute when the process is 

scheduled

Kernel-level threads 
• OS kernel provides multiple threads 

per process 

• Each thread is scheduled 
independently by the kernel’s CPU 
scheduler



Hybrid Implementations

    Multiplexing user-level threads within each kernel- level threads



Local Thread Scheduling
• Next thread is picked from among the threads 

belonging to the current process 
• Each process gets a timeslice from kernel. 
• Then the timeslice is divided up among the 

threads within the current process 

• Local scheduling can be implemented with 
either 
• Kernel-level threads OR 
• User-level threads. 

• Scheduling decision requires only local 
knowledge of threads within the current 
process. • For example, say process 

timeslice may be 50ms, and each 
thread within the process runs for 
5 msec/CPU burst



Global Thread scheduling
• Next thread to be scheduled is picked 

up from ANY process in the system. 
• Not just the current process  

• Timeslice is allocated at the 
granularity of threads 
• No notion of per-process timeslice 

• Global scheduling can be 
implemented only with kernel-level 
threads 
• Picking the next thread requires 

global knowledge of threads in all 
processes.

• For example each thread 
runs for 10msec per CPU 
burst



Thread Creation and termination
• Creation 

• int  pthread_create( pthread_t  * thread,   pthread_attr_t  *  attr,  
void * (*start_routine)(void *),  void * arg); 

• Two ways to perform thread termination 
1. Return from initial function. 
2. void pthread_exit(void * status) 

• Waiting for child thread in parent 
• pthread_join(…) 
• equivalent to waitpid



Threaded program - example
// shared counter to be incremented by each thread 
int counter = 0;  

main() 
{ 

pthread_t tid[N]; 

for (i=0;i<N;i++) { 

/*Create a thread in thread_func routine*/ 
Pthread_create(&tid[i], NULL, thread_func, NULL); 

} 

for(i=0;i<N;i++) 
 /* wait for child thread */ 
 Pthread_join(tid[i], NULL); 

} 

void *thread_func(void *arg) 
{ 
  
 /* unprotected code – race condition*/ 
 counter = counter + 1; 

 return NULL; // thread dies upon return 
}



pthread synchronization operations
• Mutex operation 

– pthread_mutex_init(…) 
– pthread_mutex_lock(…) 
– pthread_mutex_unlock (…) 
– pthread_mutex_trylock (…) 

• Condition variables 
– pthread_cond_wait (…) 
– pthread_cond_signal (…) 
– pthread_cond_broadcast (…) 
– pthread_cond_timedwait (…)


