
Why Threads Are A Bad Idea 
(for most purposes)

John Ousterhout
Sun Microsystems Laboratories

Introduction
● Threads:

● Grew up in OS world (processes).
● Evolved into user-level tool.
● Proposed as solution for a variety of problems.
● Every programmer should be a threads programmer?

● Problem: threads are very hard to program.
● Alternative: events.
● Claims:

● For most purposes proposed for threads, events are
better.

● Threads should be used only when true CPU
concurrency is needed.

What Are Threads?

● General-purpose solution for managing concurrency.
● Multiple independent execution streams.
● Shared state.
● Pre-emptive scheduling.
● Synchronization (e.g. locks, conditions).

Shared state
(memory, files, etc.)

Threads

What Are Threads Used For?
● Operating systems: one kernel thread for each user

process.
● Scientific applications: one thread per CPU (solve

problems more quickly).
● Distributed systems: process requests concurrently

(overlap I/Os).
● GUIs:

o Threads correspond to user actions; can service display
during long-running computations.

o Multimedia, animations.

What's Wrong With Threads?

● Too hard for most programmers to use.
● Even for experts, development is painful.

casual wizardsall programmers

Visual Basic programmers

C programmers

C++ programmers

Threads programmers

Java programmers

Why Threads Are Hard
● Synchronization:

o Must coordinate access to shared data with locks.
o Forget a lock? Corrupted data.

● Deadlock:
o Circular dependencies among locks.
o Each thread waits for some other thread: system hangs.

lock A lock Bthread 1 thread 2

Why Threads Are Hard, cont'd
● Hard to debug: data dependencies, timing

dependencies.
● Threads break abstraction: can't design modules

independently.
● Callbacks don't work with locks.

Module A

Module B

T1 T2

sleep wakeup

deadlock!

Module A

Module B

T1

T2

deadlock!

callbacks

calls

Common synchronization primitives

● Semaphores
o Down and up operations
o Counting semaphore
o Mutex -- binary semaphore

● Monitors and Condition variables
o Wait and signal operations

● Spin-locks
o Useful in multi-processor settings
o Dangerous to use in callbacks (e.g. interrupt context) on

uniprocessors
● "Try-lock" variants of the above

o Return with error if lock unavailable and caller would
block

Why Threads Are Hard, cont'd
● Achieving good performance is hard:

o Simple locking (e.g. monitors) yields low concurrency.
o Fine-grain locking increases complexity, reduces performance in

normal case.
o OSes limit performance (scheduling, context switches).

● Threads not well supported:
o Hard to port threaded code (PCs? Macs?).

▪ ➔ not anymore
o Standard libraries not thread-safe. ➔ not anymore
o Kernel calls, window systems not multi-threaded.

▪ ➔ not anymore
o Few debugging tools

● Often don't want concurrency anyway (e.g. window events).

Event-Driven Programming

● One execution stream: no CPU concurrency.

● Register interest in events (callbacks).

● Event loop waits for events, invokes
handlers.

● No preemption of event handlers.

● Handlers generally short-lived.

Event
Loop

Event Handlers

What Are Events Used For?

● Mostly GUIs:
o One handler for each event (press button, invoke menu

entry, etc.).
o Handler implements behavior (undo, delete file, etc.).

● Distributed systems:
o One handler for each source of input (socket, etc.).
o Handler processes incoming request, sends response.
o Event-driven I/O for I/O overlap.

Problems With Events
● Long-running handlers make application non-

responsive. Some solutions:
o Fork off subprocesses for long-running things (e.g.

multimedia), use events to find out when done.
o Break up handlers (e.g. event-driven I/O).
o Periodically call event loop in handler (reentrancy

adds complexity).
● Can't (hard to?) maintain local state across events

(handler must return).
● No CPU concurrency (not suitable for scientific apps).

Events vs. Threads
● Events avoid concurrency as much as possible, threads

embrace:
o Easy to get started with events: no concurrency, no

preemption, no synchronization, no deadlock.
o Use complicated techniques only for unusual cases.
o With threads, even the simplest application faces the full

complexity.
● Debugging easier with events:

o Timing dependencies only related to events, not to internal
scheduling.

o Problems easier to track down: slow response to button vs.
corrupted memory.

Events vs. Threads, cont'd
● Events faster than threads on single CPU:

o No locking overheads.
o No context switching.

● Events more portable than threads.

● Threads provide true concurrency:
o Can have long-running stateful handlers without freezes.
o Scalable performance on multiple CPUs.

Should You Abandon Threads?
● No: important for high-end servers (e.g. databases).

● But, avoid threads wherever possible:
o Use events, not threads, for GUIs,  

distributed systems, low-end servers.
o Only use threads where true CPU  

concurrency is needed.
o Where threads needed, isolate usage  

in threaded application kernel: keep  
most of code single-threaded.

Threaded Kernel

Event-Driven Handlers

Conclusions
● Concurrency is fundamentally hard; avoid whenever

possible. (??)
● Threads more powerful than events, but power is rarely

needed.
● Threads much harder to program than events; for experts

only.
● Use events as primary development tool (both GUIs and

distributed systems).
● Use threads only for performance-critical kernels.

