
Introduction to Virtual Machines

Kartik Gopalan

From

“Virtual Machines” ,Smith and Nair, Chapter 1

Also, Chapter 7 Andrew Tanenbaum’s book

Virtualization

• Makes a real system appear to be a set of virtual systems

• One-to-many virtualization

• E.g. one physical machine may appear as multiple virtual machines

• one physical disk may look like multiple virtual disk

• one physical network may look like multiple virtual networks

• Many-to-one virtualization

• Many physical machines/disks/networks may appear to look like one

virtual machine/disk/network etc

• Many-to-many virtualization

• Extend the above statements.

Virtual Machines
• Logical/Emulated representations of full computing system environment

• CPU + memory + I/O

• Implemented by adding layers of software to the real machine to support the

desired VM architecture.

• Uses:

• Multiple OSes on one machine, including legacy OSes

• Isolation

• Enhanced security

• Live migration of servers

• Virtual environment for testing and development

• Platform emulation

• On-the-fly optimization

• Realizing ISAs not found in physical machines

Interfaces of a computer system

User ISA : 7

System ISA : 8

Syscalls : 3

ABI : 3, 7

API : 2,7

• Process VM

• Virtualizes the ABI

• Virtualization software = Runtime

• Runs in non-privileged mode (user
space)

• Performs binary translation.

• Terminates when guest process

terminates.

• System VM

• Virtualizes the ISA

• Virtualization software = Hypervisor

• Runs in privileged mode

• Traps and emulates privileged

instructions

Two Types of VMs

Process Virtual Machines
❑Process in a multiprogramming OS

• Standard OS syscall interface + instruction set

• Multiple processes, each with its own address space and virtual machine view.

❑Emulators

• Support one ISA on hardware designed for another ISA

• Interpreter:

• Fetches, decodes and emulates individual instructions. Slow.

• Dynamic Binary Translator:

• Blocks of source instructions converted to target instructions.

• Translated blocks cached to exploit locality.

❑Same ISA Binary Optimizers

• Optimize code on the fly

• Same as emulators except source and target ISAs are the same.

❑High-Level Language VMs

• Virtual ISA (bytecode) designed for platform independence

• Platform-dependent VM executes virtual ISA

• E.g. Sun’s JVM and Microsoft’s CLI (part of .NET)

• Both are stack-based VMs that run on register-based m/c.

Alpha ISA

Windows NT Runtime

IA-32 Windows APP

Digital FX!32 Emulator

Java Application

Java Virtual Machine

OS

ISA
User ISA

System Virtual Machines

(focus of this lecture)

Hypervisor
❑ Also called Virtual Machine

Monitor (VMM)

❑ A hypervisor is an operating system
for operating systems

• Provides a virtual execution

environment for an entire OS and
its applications

• Controls access to hardware
resources

• When guest OS executes a
privileged instruction, Hypervisor
intercepts the instruction, checks
for correctness and emulates the
instruction.

Apps Apps Apps

Guest
OS 1

Guest
OS 2

Guest
OS 3

Hypervisor

Hardware

Type 1 Hypervisors (Classical System VMs)

❑Hypervisor executes natively on the host ISA

❑Hypervisor directly controls hardware and provides all device drivers

❑Hypervisor emulates sensitive instructions executed by the Guest OS

❑E.g. KVM and VMWare ESX Server

Type 2 Hypervisors (Hosted VMs)
❍ A host OS controls the hardware

❍ The Hypervisor runs partly in process
space and partly in the host kernel

❍ Hypervisor Relies on host OS to
provide drivers

❍ E.g. VMWare Desktop Client

Para-virtualized VMs
❑Modify guest OS for better performance

❑Traditional Hypervisors provide full-virtualization

• They expose to VMs virtual hardware that is functionally identical to the underlying

physical hardware.

• Advantage : allows unmodified guest OS to execute

• Disadvantage: Sensitive instructions must be trapped and emulated by Hypervisor.

• E.g. KVM and VMWare ESX provide full virtualization

❑ Para-virtualized VM

• Sees a virtual hardware abstraction that is similar, but not identical to the real

hardware.

• Guest OS is modified to replace sensitive instructions with “hypercalls” to the

Hypervisor.

• Advantage: Results in lower performance overhead

• Disadvantage: Needs modification to the guest OS.

• E.g. Xen provides both para-virtual as well as full-virtualization

❑ Often traditional Hypervisors are partially para-virtualizated

❑ Device drivers in guest OS may be para-virtualized whereas CPU and Memory may

be fully virtualized.

Whole System VMs: Emulation
❑ Host and Guest ISA are different

❑ So emulation is required

❑ Hosted VM + emulation

❑ E.g. Virtual PC (Windows on MAC)

Co-designed VMs

❑The hypervisor is designed closely with (and possibly built
into) a specific type of hardware ISA (or native ISA).

❑ Goal: Performance improvement of existing ISA (or guest ISA)
during runtime.

❑Hypervisor performs Emulation from Guest ISA to Native ISA.

❑E.g. Transmeta Crusoe

• Native ISA based on VLIW

• Guest ISA = x86

• Goal power savings

Taxonomy

Para-virtualized VMs

Hardware Virtual Machines

Versatility

Java App

Linux IA-32

Windows IA-32

Crusoe VLIW

JVM

VMWare

Code Morphing

Virtualizing individual resources in
System VMs

CPU Virtualization for VMs
• Each VM sees a set of “virtual CPUs”

• Hypervisors must emulate privileged instructions issued by guest OS.

• Modern ISAs provide special interfaces for Hypervisors to run VMs

• Intel provides the VTx interface

• AMD provides the AMD-v interface

• These special ISA interfaces allow the Hypervisors to efficiently
emulate privileged instructions executed by the guest OS.

• When guest OS executes a privileged instruction

• Hardware traps the instruction to the hypervisor

• Hypervisor checks whether instruction must be emulated.

• If so, Hypervisor reproduces the effect of privileged operation.

Execution of Privileged Instruction by Guest

Resource Control
• Issue: How to retain control of resources in the Hypervisor?

• Timer interval control performed by Hypervisor

• Also, guest OS is not allowed to read the timer value

• Guest OS sees a virtual interval timer

• Hypervisor also gains control whenever guest OS executes

privileged instructions.

Memory Virtualization for VMs
Traditional virtual memory

Virtual Address Space

Physical Address Space

Page Table

Virtual memory for VMs

Virtual Address Space

Guest Physical Address Space

Physical Address Space

First-level Page Table

Second-level Page Table

• Guest OS in each VM sees a “guest”-physical address (GPA) space instead of
the physical addresses

• Often hardware supports two-level page tables

• EPT in Intel VT-x and NPT in AMD-v

• When hardware doesn’t, then Hypervisor needs to emulate two-level page
tables using “shadow page tables”.

Shadow Page Table

(optional)

I/O Virtualization for VMs
• Hypervisor provides a virtual version of each physical device

• I/O activity directed at the virtual device is trapped by Hypervisor and converted to equivalent

request for the physical device.

• Options:

• Device emulation

• Hypervisor traps and emulates each I/O instruction from Guest in Hypervisor.

• Very slow.

• Difficult to emulate the effect of combinations of I/O instructions.

• Para-virtual devices

• Special device drivers inserted in guest OS to talk to Hypervisor.

• Most common.

• Direct device access

• Allow the VM to directly access physical device.

• Fastest option but not scalable.

• Requires IOMMU and VT-d support from hardware.

