Memory Management

Kartik Gopalan

References:

* Chapter 3, Modern Operating Systems, Andrew S. Tanenbaum
* https://en.wikipedia.org/wiki/Page (computer memory)

* https://en.wikipedia.org/wiki/Page table

* https://en.wikipedia.org/wiki/Virtual memory

https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Virtual_memory

Memory Management

 Ideally programmers want memory that 1s
* large
* fast
* persistent (non-volatile)

Memory Hierarchy

* Registers & Cache

* small amount of fast, expensive, volatile memory

* Main memory

* some medium-speed, medium price, volatile/persistent memory
* Disk & Tape

* Lots of slow, cheap, persistent, storage

Typical access time Typical capacity
FASTER SMALLER
1 nsec <1 KB
2 nsec 1 MB
10 nsec 64-512 MB
10 msec 5-50 GB
100 sec 20100 GB

SLOWER BIGGER

Relocation and Protection

* Consider an 1nstruction that reads from a memory IMIT

location

Relative Addresses In

e load reg memory address
N original program binary

* But programmer doesn’t know the
memory address where data will be stored when

the process runs!

0

. . Physical
* Solution: Relocation MAX

* Programmer assumes a “relative” address, which 1s
T . ’9 BASE +
converted to a “physical” address by the OS+hardware | |\

when the process runs. Relocated Addresses

in Executing Binary

* Protection BASE

* Access to address locations larger than limit value results 1in an
error 0

Swapping and External Fragmentation

Time —

% C C C C C
B B /B B %/ R
I ////////////%

D

]

Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(a) (b) () (d) (e) (f) 9)

Physical memory may not be enough to accommodate the needs of all processes
Memory allocation changes as

* processes come 1nto memory
 leave memory and are swapped out to disk

* Re-enter memory by getting swapped-in from disk

Shaded regions are unused memory

External Fragmentation 1s when we have free memory that 1s too small for

memory allocations. :

Virtual Memory

Virtual Address Space

Virtual memory: means that each process gets of a single Process
an 1llusion that 1t has its own memory space
whose size 1s independent of the size o Page
physical RAM in the system. J
Entire
Physical RAM

How? Break up the memory space ot a process
into equal-sized PAGES.

* Typically, a page = 4K1B

Memory 1s allocated to processes at the
granularity of pages

+ E.g. 4KiB, 8KiB, 12KiB efc.

OS then decides which pages stay in memory
and which get paged (moved) out to disk.

Internal Fragmentation

* Internal Fragmentation occurs when some of part of
allocated memory 1s wasted.

* E.g. malloc() of 100 bytes might fetch a 4KiB page from
OS.

» Then 4KiB-100 bytes might be wasted, unless used by
future malloc() operations

* Virtual Memory introduces internal fragmentation

» Larger the page size, more internal fragmentation

» Virtual Memory eliminates external fragmentation

* All memory allocations occur at the granularity of page
size, so no small unused memory fragments are left
around.

Memory Management Unit (MMU)

The CPU sends virtual

CPU addresses to the MMU
package
CPU .
Memory M Disk
management emory controller

.‘ unit
N

The MMU sends physical
addresses to the memory

Bus

 MMU 1s a hardware module that accompanies the CPU

* [t translates the Virtual Address used by executing
instructions to Physical Addresses 1in the main memory.

S1ze of address space (in bytes) as a
function of address size (1n bits)

Number of bits in address Maximum address space size (bytes)
0 20 = 1 byte
1 21 = 2 bytes
2 22 = 4 bytes
10 210 = 1024 = 1KiB
12 212 = 4KiB
16 216 = 64 KiB
32 232 = 4GiB (Gibibytes)
64 264 = 16 EiB (Exbibytes)

Page Table

An array that stores the mapping from
virtual page numbers to physical
numbers

The OS maintains

* One page table per userspace process.

* And usually another page table for
kernel memory.

60
56
e
48
44
40
36
32
28
24
20
16
12

Virtual
address
space

K-64
K-60
K-56
K-52
K-48
K-44
K-40
K-36
K-32
K-28
K-24
K-20
K-16
K12
4K-8
OK-4

A A A A A A A A A A A A A A A A

} Virtual page

| o8K-32K

N|=2]O|O]|R]|WIX]IXIX|IO] XINIX]IX|X] X

N

Physical
memory
address

24K-28K
20K-24K
16K-20K
12K-16K
8K-12K
4K-8K

}\OK-4K

Page frame

10

Translating
Virtual address (VA) to physical address (PA)

Virtual Address Space Physical RAM

- Byte Address =
. Page Number x Page Size +
- 6 Byte Offset in the page
N
B A
- + Byte Offset VA = VPN x Page Size + Byte Offset
. D
- PA = PPN x Page Size + Byte Offset
4
3
Virtual .
Page 2 Physical
I
Numbers 1 Byte Offset 2 Page (frame)
(VPN) Numbers
1
0
0

Virtual Address Translation
For Small Address Space

+ Outgoing
1]11|olo|o|o|lo|o]o|o|olo]|1]|o]|O pzﬁsical
v > address
¥ A (24580)
151 000 0
14| 000 0
13| 000 0
12| 000 0
11 111 1
10| 000 0
91 101 1 o
-bit offset
Page o L 0 copied directly
table 7 {000 0 from input
6| 000 0 to output
51 011 1
41 100 1
3|1 000 1
2 110 1 > 110
1 001 1 ’ .
| .—Presen
0f 010 1 absent bit
Virtual page = 2 is used
as an index into the
page table |rjr<§[0rr'lling
N virtua
olo]1|o]olo]o|o|o|o|o]|ofo]1|o]0 ?5%2?5

Internal operation of MMU with 16 4 KB pages |,

Virtual Address Translation
For Large Address Space

Second-level page tables

| * 32 bit address with 2 page
1 | Page table ﬁelds
1~ [theop
1 5, | 4M of
-, | memory
-] + Two-level page tables
p-gogpe- Iteavtjia
1023@ : /: “/w 1
T v - * PT too Big for MMU
s 5 = il . :
il 20) = * Keep it iIn main memory
“ | 1=
0 5 ~
}; * But how does MMU know
B where to find PT?
g 1 * Registers (CR2 on Intel)
g :: :)—des
1 >
0 —~—

13

Typical Page Table Entry (PTE)

Caching
disabled Modified Present/absent

29901 | B P ——

Referenced Protection

 Page Frame number = physical page number for the virtual page
represented by the PTE

» Referenced bit: Whether the page was accessed since last time the
bit was reset.

* Modified bit: Also called “Dirty” bit. Whether the page was written to,
since the last time the bit was reset.

* Protection bits: Whether the page is readable? writeable?
executable? contains higher privilege code/data?

* Present/Absent bit: Whether the PTE contains a valid page frame
number. Used for marking swapped/unallocated pages.

14

TLB — Translation Lookaside Buffer

Valid | Virtual page | Modified | Protection | Page frame
1 140 1 RW 31
1 20 0 R X 38
1 130 1 RW 29
1 129 1 RW 62
1 19 0 R X 50
1 21 0 R X 45
1 860 1 RW 14
1 861 1 RW /5

TLB 1s a small cache that speeds up the translation of virtual addresses to physical addresses.

TLB caches translations from virtual page number to physical page number so that the MMU doesn’t
need to access the page-table 1n memory too often.

TLB 1s part of the MMU hardware (comes with CPU)
It 1s not a Data Cache or anInstruction Cache. Those are separate.

On older x86 processors, TLB had to be “flushed” upon every context switch because there was no
field in TLB to identify the process context.

» Tagged TLB can reduce this overhead

15

Impact of Page Size on Page tables

Small page size

* Advantages
* less internal fragmentation
* page-in/page-out less expensive

* Disadvantages

» process that needs more pages has larger page table
» Smaller “TLB Coverage” (discussed later)

16

Bit distribution in a memory address

* Fora 32 bit address and ...
» 4Ki1B page
» 12 bit offset and 20 bit page number
» 8KiB page
* 13 bit offset and 19 bit page number
* 64KiB page
* 16 bit offset and 16 bit page number

Quiz

Consider a machine that has a 32-bit virtual address space
and 8Ki1Byte page size.

. What 1s the total size (1n bytes) of the virtual address space

for each process?

. How many bits 1n a 32-bit address are needed to determine
the page number of the address?

. How many bits 1n a 32-bit address represent the byte offset
into a page”?

. How many page-table entries are present in the page table?

18

Quiz Answers

* Consider a machine that has a 32-bit virtual address space and 8KiByte
page size.

1. Total size (in bytes) of the virtual address space for each process = 2732
=4 %1024 * 1024 *1024 bytes =4 Gi1B

2. Number of pages 1n virtual address space = 4Gi1B/8Ki1B = 512*1024 =
279%*2710 = 279
* So the number of bits 1n a 32-bit address are needed to determine the page
number of the address = log2(4G1B/8KiB) = log2(2719) = 19 bits

3. How many bits 1n a 32-bit address represent the byte offset into a page?
. 1og2(8KiB) = 10g2(2"13) = 13 bits
* Also, 32 —-19 =13 bits

4. How many page-table entries are present in the page table?
* Number of PTEs = Number of pages in virtual address = 4G1B/8KiB = 2719
pages

19

References

Chapter 3: Modern Operating Systems, Andrew S. Tanenbaum

X86 architecture
http://en.wikipedia.org/wiki/X86

Memory segment
http://en.wikipedia.org/wiki/Memory segment

Memory model
http://en.wikipedia.org/wiki/Memory model

1A-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic
Architecture

20

