
1

Memory Management

References: 
• Chapter 3, Modern Operating Systems, Andrew S. Tanenbaum 
• https://en.wikipedia.org/wiki/Page_(computer_memory) 
• https://en.wikipedia.org/wiki/Page_table 
• https://en.wikipedia.org/wiki/Virtual_memory 

Kartik Gopalan

https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Page_table
https://en.wikipedia.org/wiki/Virtual_memory


2

Memory Management 

• Ideally programmers want memory that is 
• large 
• fast 
• persistent (non-volatile)



3

Memory Hierarchy

SLOWER

FASTER SMALLER

BIGGER

• Registers  & Cache 
• small amount of fast, expensive, volatile memory 

• Main memory 
• some medium-speed, medium price, volatile/persistent memory 

• Disk & Tape 
• Lots of slow, cheap, persistent, storage



Relocation and Protection
• Consider an instruction that reads from a memory 

location 
• load reg memory_address 
• But programmer doesn’t know the 
memory_address where data will be stored when 
the process runs! 

• Solution: Relocation 
• Programmer assumes a “relative” address, which is 

converted to a “physical” address by the OS+hardware 
when the process runs. 

• Protection 
• Access to address locations larger than limit value results in an 

error

Relative Addresses in  
original program binary

0

LIMIT

Relocated Addresses  
in Executing Binary

0

Physical  
MAX

BASE

BASE + 
  LIMIT



5

Swapping and External Fragmentation

• Physical memory may not be enough to accommodate the needs of all processes 
• Memory allocation changes as  

• processes come into memory 
• leave memory and are swapped out to disk 
• Re-enter memory by getting swapped-in from disk 

• Shaded regions are unused memory 
• External Fragmentation is when we have free memory that is too small for 

memory allocations.



6

Virtual Memory

• Virtual memory: means that each process gets 
an illusion that it has its own memory space 
whose size is independent of the size of 
physical RAM in the system. 

• How? Break up the memory space of a process 
into equal-sized PAGES. 
• Typically, a page = 4KiB 

• Memory is allocated to processes at the 
granularity of pages 
• E.g. 4KiB, 8KiB, 12KiB etc. 

• OS then decides which pages stay in memory 
and which get paged (moved) out to disk.

Virtual Address Space  
of a single Process

Entire 
Physical RAM

Page}



Internal Fragmentation
• Internal Fragmentation occurs when some of part of 

allocated memory is wasted. 

• E.g. malloc() of 100 bytes might fetch a 4KiB page from 
OS.  
• Then 4KiB-100 bytes might be wasted, unless used by 

future malloc() operations 

• Virtual Memory introduces internal fragmentation 
• Larger the page size, more internal fragmentation 

• Virtual Memory eliminates external fragmentation 
• All memory allocations occur at the granularity of page 

size, so no small unused memory fragments are left 
around.



8

Memory Management Unit (MMU)

• MMU is a hardware module that accompanies the CPU 
• It translates the Virtual Address used by executing 

instructions to Physical Addresses in the main memory.



Size of address space (in bytes) as a 
function of address size (in bits)

Number of bits in address Maximum address space size (bytes)

0 20  = 1 byte

1 21  = 2 bytes

2 22  = 4 bytes

10 210  = 1024 = 1KiB

12 212  = 4KiB

16 216  = 64 KiB

32 232  = 4GiB (Gibibytes)

64 264  = 16 EiB (Exbibytes)



10

Page Table

• An array that stores the mapping from 
virtual page numbers to physical  
numbers  

• The OS maintains  
• One page table per userspace process. 
• And usually another page table for 

kernel memory. 
 



Translating  
Virtual address (VA) to physical address (PA)

Virtual Address Space Physical RAM

0

1

2

Byte Address =  
Page Number x Page Size + 
Byte Offset in the page 

VA = VPN x Page Size + Byte Offset 

PA = PPN x Page Size + Byte Offset 

0

1

2

3

4

5

6

Byte Offset

Byte Offset

Virtual 
Page  

Numbers 
(VPN)

Physical 
Page (frame)  

Numbers 
(PPN)



12

Virtual Address Translation 
For Small Address Space

Internal operation of MMU with 16 4 KB pages



13

Virtual Address Translation 
For Large Address Space

• 32 bit address with 2 page 
table fields 

• Two-level page tables 

• PT too Big for MMU 
• Keep it in main memory 

• But how does MMU know 
where to find PT? 

• Registers (CR2 on Intel)

Top-level  
page table

Second-level page tables



14

Typical Page Table Entry (PTE)

• Page Frame number = physical page number for the virtual page 
represented by the PTE 

• Referenced bit: Whether the page was accessed since last time the 
bit was reset. 

• Modified bit: Also called “Dirty” bit. Whether the page was written to, 
since the last time the bit was reset. 

• Protection bits: Whether the page is readable? writeable? 
executable?  contains higher privilege code/data? 

• Present/Absent bit: Whether the PTE contains a valid page frame 
number. Used for marking swapped/unallocated pages.



15

TLB – Translation Lookaside Buffer

• TLB is a small cache that speeds up the translation of virtual addresses to physical addresses. 
• TLB caches translations from virtual page number to physical page number so that the MMU doesn’t 

need to access the page-table in memory too often. 
• TLB is part of the MMU hardware (comes with CPU) 
• It is not a Data Cache or anInstruction Cache. Those are separate. 
• On older x86 processors, TLB had to be “flushed” upon every context switch because there was no 

field in TLB to identify the process context. 
• Tagged TLB can reduce this overhead



16

Impact of Page Size on Page tables

Small page size 
• Advantages 

• less internal fragmentation  
• page-in/page-out less expensive 

• Disadvantages 
• process that needs more pages has larger page table 
• Smaller “TLB Coverage” (discussed later)



Bit distribution in a memory address

• For a 32 bit address and … 
• 4KiB page  

• 12 bit offset and 20 bit page number 
• 8KiB page 

• 13 bit offset and 19 bit page number 
• 64KiB page 

• 16 bit offset and 16 bit page number



18

Quiz
• Consider a machine that has a 32-bit virtual address space 

and 8KiByte page size. 

1. What is the total size (in bytes) of the virtual address space 
for each process?  

2. How many bits in a 32-bit address are needed to determine 
the page number of the address? 

3. How many bits in a 32-bit address represent the byte offset 
into a page? 

4. How many page-table entries are present in the page table?



19

Quiz Answers
• Consider a machine that has a 32-bit virtual address space and 8KiByte 

page size. 

1. Total size (in bytes) of the virtual address space for each process = 2^32 
= 4 * 1024 * 1024 *1024 bytes = 4 GiB 

2. Number of pages in virtual address space = 4GiB/8KiB = 512*1024 = 
2^9*2^10 = 2^19 
• So the number of bits in a 32-bit address are needed to determine the page 

number of the address = log2(4GiB/8KiB) = log2(2^19) = 19 bits 

3. How many bits in a 32-bit address represent the byte offset into a page? 
• log2(8KiB) = log2(2^13) = 13 bits 
• Also, 32 – 19 = 13 bits 

4. How many page-table entries are present in the page table? 
• Number of PTEs = Number of pages in virtual address = 4GiB/8KiB = 2^19 

pages



20

References

• Chapter 3: Modern Operating Systems, Andrew S. Tanenbaum 
• X86 architecture 

http://en.wikipedia.org/wiki/X86 
• Memory segment 

http://en.wikipedia.org/wiki/Memory_segment 

• Memory model 
http://en.wikipedia.org/wiki/Memory_model 

• IA-32 Intel Architecture Software Developer’s Manual, Volume 1: Basic 
Architecture


