
Operating Systems Sample Questions

Concurrency: Semaphores, Condition Variables, and the
Producer-Consumer Problem

1. Describe the behavior of (a) UP and DOWN operations on a semaphore, (b) WAIT and
SIGNAL operations on a condition variable.

2. What is the main difference between a binary semaphore and a counting semaphore?

3. Consider the classical producer-consumer problem. Producers produce items and insert them
in a common buffer. Consumers remove items from the common buffer and consume them.
In the following skeleton of pseudo-code, demonstrate the use of SEMAPHORES and
MUTEXES to complete the pseudo-code for producer and consumer functions. Your code
should have no race conditions and no busy loops.

You can assume that the following functions are available to you. You shouldn’t need anything
more than these functions in your pseudo-code.
produce_item() produces and returns an item
insert_item(item) inserts the item in the common buffer
remove_item() removes and returns an item at the head of the buffer
consume_item(item) consumes the item supplied
up(&semaphore) and down(&semaphore) have their usual meanings

==========================Pseudo-code Skeleton ===========================
#define N 100 /* Number of slots in the buffer */
typedef int semaphore; /* semaphores are a special kind of counter */
semaphore mutex = (initialize this); /* figure out the role of mutex */
semaphore empty = (initialize this); /* figure out the role of empty sem */
semaphore full = (initialize this); /* figure out the role of full sem */

void producer(void)
{
 /* complete this function */
}

void consumer(void)
{

 /* complete this function too */
}
===

4. Consider the classical producer-consumer problem. Producers produce items and insert them
in a common buffer. Consumers remove items from the common buffer and consume them.
Complete the following skeleton pseudo-code to explain how you can solve the producer-
consumer problem using a monitor and condition variables.

procedure Producer
begin

/* complete this procedure */
end

procedure Consumer
begin

/* complete this procedure */
end

monitor ProducerConsumer
condition /* declare the condition variables you need */
integer /* declare any other variables you need */

procedure insert(item)
begin

/* complete this procedure */
end

procedure item *remove()
begin

/* complete this procedure */
end

end monitor

5. What is the producer-consumer problem (NOT the solution) and its three synchronization
requirements?

6. When would you use a semaphore? When would you use a condition variable?

7. What are the tradeoffs in using semaphores versus monitors with condition variables?

8. How does the Test-and-Set Lock (TSL) instruction work? Why can’t we use separate LOAD
and STORE instructions instead?

9. Explain how you can implement the UP and DOWN operations on a mutex (binary
semaphore) using the TSL instruction.

10. Explain how you can implement the WAIT and SIGNAL operations on condition variable
using the TSL instruction.

11. How does the compare-and-set instruction work? (b) How can you implement a DOWN
operation on a mutex (binary semaphore) using a compare-and-set instruction (such as
CMPXCHG in x86)?

